| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇 ) → 𝑇 ∈ Tarski ) |
| 2 |
|
tskpw |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → 𝒫 𝐴 ∈ 𝑇 ) |
| 3 |
2
|
3adant2 |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇 ) → 𝒫 𝐴 ∈ 𝑇 ) |
| 4 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
| 5 |
4
|
3ad2ant2 |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇 ) → Ord 𝐴 ) |
| 6 |
|
ordunisuc |
⊢ ( Ord 𝐴 → ∪ suc 𝐴 = 𝐴 ) |
| 7 |
|
eqimss |
⊢ ( ∪ suc 𝐴 = 𝐴 → ∪ suc 𝐴 ⊆ 𝐴 ) |
| 8 |
5 6 7
|
3syl |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇 ) → ∪ suc 𝐴 ⊆ 𝐴 ) |
| 9 |
|
sspwuni |
⊢ ( suc 𝐴 ⊆ 𝒫 𝐴 ↔ ∪ suc 𝐴 ⊆ 𝐴 ) |
| 10 |
8 9
|
sylibr |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇 ) → suc 𝐴 ⊆ 𝒫 𝐴 ) |
| 11 |
|
tskss |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝒫 𝐴 ∈ 𝑇 ∧ suc 𝐴 ⊆ 𝒫 𝐴 ) → suc 𝐴 ∈ 𝑇 ) |
| 12 |
1 3 10 11
|
syl3anc |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇 ) → suc 𝐴 ∈ 𝑇 ) |