Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇 ) → 𝑇 ∈ Tarski ) |
2 |
|
tskpw |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → 𝒫 𝐴 ∈ 𝑇 ) |
3 |
2
|
3adant2 |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇 ) → 𝒫 𝐴 ∈ 𝑇 ) |
4 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
5 |
4
|
3ad2ant2 |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇 ) → Ord 𝐴 ) |
6 |
|
ordunisuc |
⊢ ( Ord 𝐴 → ∪ suc 𝐴 = 𝐴 ) |
7 |
|
eqimss |
⊢ ( ∪ suc 𝐴 = 𝐴 → ∪ suc 𝐴 ⊆ 𝐴 ) |
8 |
5 6 7
|
3syl |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇 ) → ∪ suc 𝐴 ⊆ 𝐴 ) |
9 |
|
sspwuni |
⊢ ( suc 𝐴 ⊆ 𝒫 𝐴 ↔ ∪ suc 𝐴 ⊆ 𝐴 ) |
10 |
8 9
|
sylibr |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇 ) → suc 𝐴 ⊆ 𝒫 𝐴 ) |
11 |
|
tskss |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝒫 𝐴 ∈ 𝑇 ∧ suc 𝐴 ⊆ 𝒫 𝐴 ) → suc 𝐴 ∈ 𝑇 ) |
12 |
1 3 10 11
|
syl3anc |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇 ) → suc 𝐴 ∈ 𝑇 ) |