Metamath Proof Explorer


Theorem tsksuc

Description: If an element of a Tarski class is an ordinal number, its successor is an element of the class. JFM CLASSES2 th. 6 (partly). (Contributed by FL, 22-Feb-2011) (Proof shortened by Mario Carneiro, 20-Sep-2014)

Ref Expression
Assertion tsksuc ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴𝑇 ) → suc 𝐴𝑇 )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴𝑇 ) → 𝑇 ∈ Tarski )
2 tskpw ( ( 𝑇 ∈ Tarski ∧ 𝐴𝑇 ) → 𝒫 𝐴𝑇 )
3 2 3adant2 ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴𝑇 ) → 𝒫 𝐴𝑇 )
4 eloni ( 𝐴 ∈ On → Ord 𝐴 )
5 4 3ad2ant2 ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴𝑇 ) → Ord 𝐴 )
6 ordunisuc ( Ord 𝐴 suc 𝐴 = 𝐴 )
7 eqimss ( suc 𝐴 = 𝐴 suc 𝐴𝐴 )
8 5 6 7 3syl ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴𝑇 ) → suc 𝐴𝐴 )
9 sspwuni ( suc 𝐴 ⊆ 𝒫 𝐴 suc 𝐴𝐴 )
10 8 9 sylibr ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴𝑇 ) → suc 𝐴 ⊆ 𝒫 𝐴 )
11 tskss ( ( 𝑇 ∈ Tarski ∧ 𝒫 𝐴𝑇 ∧ suc 𝐴 ⊆ 𝒫 𝐴 ) → suc 𝐴𝑇 )
12 1 3 10 11 syl3anc ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴𝑇 ) → suc 𝐴𝑇 )