Step |
Hyp |
Ref |
Expression |
1 |
|
uniprg |
⊢ ( ( 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇 ) → ∪ { 𝐴 , 𝐵 } = ( 𝐴 ∪ 𝐵 ) ) |
2 |
1
|
3adant1 |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇 ) → ∪ { 𝐴 , 𝐵 } = ( 𝐴 ∪ 𝐵 ) ) |
3 |
|
simp1l |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇 ) → 𝑇 ∈ Tarski ) |
4 |
|
simp1r |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇 ) → Tr 𝑇 ) |
5 |
|
tskpr |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇 ) → { 𝐴 , 𝐵 } ∈ 𝑇 ) |
6 |
5
|
3adant1r |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇 ) → { 𝐴 , 𝐵 } ∈ 𝑇 ) |
7 |
|
tskuni |
⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ { 𝐴 , 𝐵 } ∈ 𝑇 ) → ∪ { 𝐴 , 𝐵 } ∈ 𝑇 ) |
8 |
3 4 6 7
|
syl3anc |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇 ) → ∪ { 𝐴 , 𝐵 } ∈ 𝑇 ) |
9 |
2 8
|
eqeltrrd |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇 ) → ( 𝐴 ∪ 𝐵 ) ∈ 𝑇 ) |