Metamath Proof Explorer


Theorem tskun

Description: The union of two elements of a transitive Tarski class is in the set. (Contributed by Mario Carneiro, 20-Sep-2014)

Ref Expression
Assertion tskun ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴𝑇𝐵𝑇 ) → ( 𝐴𝐵 ) ∈ 𝑇 )

Proof

Step Hyp Ref Expression
1 uniprg ( ( 𝐴𝑇𝐵𝑇 ) → { 𝐴 , 𝐵 } = ( 𝐴𝐵 ) )
2 1 3adant1 ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴𝑇𝐵𝑇 ) → { 𝐴 , 𝐵 } = ( 𝐴𝐵 ) )
3 simp1l ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴𝑇𝐵𝑇 ) → 𝑇 ∈ Tarski )
4 simp1r ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴𝑇𝐵𝑇 ) → Tr 𝑇 )
5 tskpr ( ( 𝑇 ∈ Tarski ∧ 𝐴𝑇𝐵𝑇 ) → { 𝐴 , 𝐵 } ∈ 𝑇 )
6 5 3adant1r ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴𝑇𝐵𝑇 ) → { 𝐴 , 𝐵 } ∈ 𝑇 )
7 tskuni ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ { 𝐴 , 𝐵 } ∈ 𝑇 ) → { 𝐴 , 𝐵 } ∈ 𝑇 )
8 3 4 6 7 syl3anc ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴𝑇𝐵𝑇 ) → { 𝐴 , 𝐵 } ∈ 𝑇 )
9 2 8 eqeltrrd ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴𝑇𝐵𝑇 ) → ( 𝐴𝐵 ) ∈ 𝑇 )