Step |
Hyp |
Ref |
Expression |
1 |
|
tsksdom |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → 𝐴 ≺ 𝑇 ) |
2 |
|
cardidg |
⊢ ( 𝑇 ∈ Tarski → ( card ‘ 𝑇 ) ≈ 𝑇 ) |
3 |
2
|
ensymd |
⊢ ( 𝑇 ∈ Tarski → 𝑇 ≈ ( card ‘ 𝑇 ) ) |
4 |
3
|
adantr |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → 𝑇 ≈ ( card ‘ 𝑇 ) ) |
5 |
|
sdomentr |
⊢ ( ( 𝐴 ≺ 𝑇 ∧ 𝑇 ≈ ( card ‘ 𝑇 ) ) → 𝐴 ≺ ( card ‘ 𝑇 ) ) |
6 |
1 4 5
|
syl2anc |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → 𝐴 ≺ ( card ‘ 𝑇 ) ) |
7 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 “ 𝑥 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 “ 𝑥 ) ) |
8 |
7
|
rnmpt |
⊢ ran ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 “ 𝑥 ) ) = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } |
9 |
|
cardon |
⊢ ( card ‘ 𝑇 ) ∈ On |
10 |
|
sdomdom |
⊢ ( 𝐴 ≺ ( card ‘ 𝑇 ) → 𝐴 ≼ ( card ‘ 𝑇 ) ) |
11 |
|
ondomen |
⊢ ( ( ( card ‘ 𝑇 ) ∈ On ∧ 𝐴 ≼ ( card ‘ 𝑇 ) ) → 𝐴 ∈ dom card ) |
12 |
9 10 11
|
sylancr |
⊢ ( 𝐴 ≺ ( card ‘ 𝑇 ) → 𝐴 ∈ dom card ) |
13 |
12
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑇 ∧ 𝐴 ≺ ( card ‘ 𝑇 ) ) → 𝐴 ∈ dom card ) |
14 |
|
vex |
⊢ 𝑓 ∈ V |
15 |
14
|
imaex |
⊢ ( 𝑓 “ 𝑥 ) ∈ V |
16 |
15 7
|
fnmpti |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 “ 𝑥 ) ) Fn 𝐴 |
17 |
|
dffn4 |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 “ 𝑥 ) ) Fn 𝐴 ↔ ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 “ 𝑥 ) ) : 𝐴 –onto→ ran ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 “ 𝑥 ) ) ) |
18 |
16 17
|
mpbi |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 “ 𝑥 ) ) : 𝐴 –onto→ ran ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 “ 𝑥 ) ) |
19 |
|
fodomnum |
⊢ ( 𝐴 ∈ dom card → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 “ 𝑥 ) ) : 𝐴 –onto→ ran ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 “ 𝑥 ) ) → ran ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 “ 𝑥 ) ) ≼ 𝐴 ) ) |
20 |
13 18 19
|
mpisyl |
⊢ ( ( 𝐴 ∈ 𝑇 ∧ 𝐴 ≺ ( card ‘ 𝑇 ) ) → ran ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 “ 𝑥 ) ) ≼ 𝐴 ) |
21 |
8 20
|
eqbrtrrid |
⊢ ( ( 𝐴 ∈ 𝑇 ∧ 𝐴 ≺ ( card ‘ 𝑇 ) ) → { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } ≼ 𝐴 ) |
22 |
|
domsdomtr |
⊢ ( ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } ≼ 𝐴 ∧ 𝐴 ≺ ( card ‘ 𝑇 ) ) → { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } ≺ ( card ‘ 𝑇 ) ) |
23 |
21 22
|
sylancom |
⊢ ( ( 𝐴 ∈ 𝑇 ∧ 𝐴 ≺ ( card ‘ 𝑇 ) ) → { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } ≺ ( card ‘ 𝑇 ) ) |
24 |
23
|
adantll |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) ∧ 𝐴 ≺ ( card ‘ 𝑇 ) ) → { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } ≺ ( card ‘ 𝑇 ) ) |
25 |
6 24
|
mpdan |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } ≺ ( card ‘ 𝑇 ) ) |
26 |
|
ne0i |
⊢ ( 𝐴 ∈ 𝑇 → 𝑇 ≠ ∅ ) |
27 |
|
tskcard |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅ ) → ( card ‘ 𝑇 ) ∈ Inacc ) |
28 |
26 27
|
sylan2 |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → ( card ‘ 𝑇 ) ∈ Inacc ) |
29 |
|
elina |
⊢ ( ( card ‘ 𝑇 ) ∈ Inacc ↔ ( ( card ‘ 𝑇 ) ≠ ∅ ∧ ( cf ‘ ( card ‘ 𝑇 ) ) = ( card ‘ 𝑇 ) ∧ ∀ 𝑥 ∈ ( card ‘ 𝑇 ) 𝒫 𝑥 ≺ ( card ‘ 𝑇 ) ) ) |
30 |
29
|
simp2bi |
⊢ ( ( card ‘ 𝑇 ) ∈ Inacc → ( cf ‘ ( card ‘ 𝑇 ) ) = ( card ‘ 𝑇 ) ) |
31 |
28 30
|
syl |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → ( cf ‘ ( card ‘ 𝑇 ) ) = ( card ‘ 𝑇 ) ) |
32 |
25 31
|
breqtrrd |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } ≺ ( cf ‘ ( card ‘ 𝑇 ) ) ) |
33 |
32
|
3adant2 |
⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) → { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } ≺ ( cf ‘ ( card ‘ 𝑇 ) ) ) |
34 |
33
|
adantr |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) → { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } ≺ ( cf ‘ ( card ‘ 𝑇 ) ) ) |
35 |
28
|
3adant2 |
⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) → ( card ‘ 𝑇 ) ∈ Inacc ) |
36 |
35
|
adantr |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) → ( card ‘ 𝑇 ) ∈ Inacc ) |
37 |
|
inawina |
⊢ ( ( card ‘ 𝑇 ) ∈ Inacc → ( card ‘ 𝑇 ) ∈ Inaccw ) |
38 |
|
winalim |
⊢ ( ( card ‘ 𝑇 ) ∈ Inaccw → Lim ( card ‘ 𝑇 ) ) |
39 |
36 37 38
|
3syl |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) → Lim ( card ‘ 𝑇 ) ) |
40 |
|
vex |
⊢ 𝑦 ∈ V |
41 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 = ( 𝑓 “ 𝑥 ) ↔ 𝑦 = ( 𝑓 “ 𝑥 ) ) ) |
42 |
41
|
rexbidv |
⊢ ( 𝑧 = 𝑦 → ( ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝑓 “ 𝑥 ) ) ) |
43 |
40 42
|
elab |
⊢ ( 𝑦 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } ↔ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝑓 “ 𝑥 ) ) |
44 |
|
imassrn |
⊢ ( 𝑓 “ 𝑥 ) ⊆ ran 𝑓 |
45 |
|
f1ofo |
⊢ ( 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) → 𝑓 : ∪ 𝐴 –onto→ ( card ‘ 𝑇 ) ) |
46 |
|
forn |
⊢ ( 𝑓 : ∪ 𝐴 –onto→ ( card ‘ 𝑇 ) → ran 𝑓 = ( card ‘ 𝑇 ) ) |
47 |
45 46
|
syl |
⊢ ( 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) → ran 𝑓 = ( card ‘ 𝑇 ) ) |
48 |
44 47
|
sseqtrid |
⊢ ( 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) → ( 𝑓 “ 𝑥 ) ⊆ ( card ‘ 𝑇 ) ) |
49 |
48
|
ad2antlr |
⊢ ( ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 “ 𝑥 ) ⊆ ( card ‘ 𝑇 ) ) |
50 |
|
f1of1 |
⊢ ( 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) → 𝑓 : ∪ 𝐴 –1-1→ ( card ‘ 𝑇 ) ) |
51 |
|
elssuni |
⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ ∪ 𝐴 ) |
52 |
|
vex |
⊢ 𝑥 ∈ V |
53 |
52
|
f1imaen |
⊢ ( ( 𝑓 : ∪ 𝐴 –1-1→ ( card ‘ 𝑇 ) ∧ 𝑥 ⊆ ∪ 𝐴 ) → ( 𝑓 “ 𝑥 ) ≈ 𝑥 ) |
54 |
50 51 53
|
syl2an |
⊢ ( ( 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 “ 𝑥 ) ≈ 𝑥 ) |
55 |
54
|
adantll |
⊢ ( ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 “ 𝑥 ) ≈ 𝑥 ) |
56 |
|
simpl1 |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑇 ∈ Tarski ) |
57 |
|
trss |
⊢ ( Tr 𝑇 → ( 𝐴 ∈ 𝑇 → 𝐴 ⊆ 𝑇 ) ) |
58 |
57
|
imp |
⊢ ( ( Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) → 𝐴 ⊆ 𝑇 ) |
59 |
58
|
3adant1 |
⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) → 𝐴 ⊆ 𝑇 ) |
60 |
59
|
sselda |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝑇 ) |
61 |
|
tsksdom |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ) → 𝑥 ≺ 𝑇 ) |
62 |
56 60 61
|
syl2anc |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≺ 𝑇 ) |
63 |
56 3
|
syl |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑇 ≈ ( card ‘ 𝑇 ) ) |
64 |
|
sdomentr |
⊢ ( ( 𝑥 ≺ 𝑇 ∧ 𝑇 ≈ ( card ‘ 𝑇 ) ) → 𝑥 ≺ ( card ‘ 𝑇 ) ) |
65 |
62 63 64
|
syl2anc |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≺ ( card ‘ 𝑇 ) ) |
66 |
65
|
adantlr |
⊢ ( ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≺ ( card ‘ 𝑇 ) ) |
67 |
|
ensdomtr |
⊢ ( ( ( 𝑓 “ 𝑥 ) ≈ 𝑥 ∧ 𝑥 ≺ ( card ‘ 𝑇 ) ) → ( 𝑓 “ 𝑥 ) ≺ ( card ‘ 𝑇 ) ) |
68 |
55 66 67
|
syl2anc |
⊢ ( ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 “ 𝑥 ) ≺ ( card ‘ 𝑇 ) ) |
69 |
36 30
|
syl |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) → ( cf ‘ ( card ‘ 𝑇 ) ) = ( card ‘ 𝑇 ) ) |
70 |
69
|
adantr |
⊢ ( ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( cf ‘ ( card ‘ 𝑇 ) ) = ( card ‘ 𝑇 ) ) |
71 |
68 70
|
breqtrrd |
⊢ ( ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 “ 𝑥 ) ≺ ( cf ‘ ( card ‘ 𝑇 ) ) ) |
72 |
|
sseq1 |
⊢ ( 𝑦 = ( 𝑓 “ 𝑥 ) → ( 𝑦 ⊆ ( card ‘ 𝑇 ) ↔ ( 𝑓 “ 𝑥 ) ⊆ ( card ‘ 𝑇 ) ) ) |
73 |
|
breq1 |
⊢ ( 𝑦 = ( 𝑓 “ 𝑥 ) → ( 𝑦 ≺ ( cf ‘ ( card ‘ 𝑇 ) ) ↔ ( 𝑓 “ 𝑥 ) ≺ ( cf ‘ ( card ‘ 𝑇 ) ) ) ) |
74 |
72 73
|
anbi12d |
⊢ ( 𝑦 = ( 𝑓 “ 𝑥 ) → ( ( 𝑦 ⊆ ( card ‘ 𝑇 ) ∧ 𝑦 ≺ ( cf ‘ ( card ‘ 𝑇 ) ) ) ↔ ( ( 𝑓 “ 𝑥 ) ⊆ ( card ‘ 𝑇 ) ∧ ( 𝑓 “ 𝑥 ) ≺ ( cf ‘ ( card ‘ 𝑇 ) ) ) ) ) |
75 |
74
|
biimprcd |
⊢ ( ( ( 𝑓 “ 𝑥 ) ⊆ ( card ‘ 𝑇 ) ∧ ( 𝑓 “ 𝑥 ) ≺ ( cf ‘ ( card ‘ 𝑇 ) ) ) → ( 𝑦 = ( 𝑓 “ 𝑥 ) → ( 𝑦 ⊆ ( card ‘ 𝑇 ) ∧ 𝑦 ≺ ( cf ‘ ( card ‘ 𝑇 ) ) ) ) ) |
76 |
49 71 75
|
syl2anc |
⊢ ( ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 = ( 𝑓 “ 𝑥 ) → ( 𝑦 ⊆ ( card ‘ 𝑇 ) ∧ 𝑦 ≺ ( cf ‘ ( card ‘ 𝑇 ) ) ) ) ) |
77 |
76
|
rexlimdva |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) → ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝑓 “ 𝑥 ) → ( 𝑦 ⊆ ( card ‘ 𝑇 ) ∧ 𝑦 ≺ ( cf ‘ ( card ‘ 𝑇 ) ) ) ) ) |
78 |
43 77
|
syl5bi |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) → ( 𝑦 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } → ( 𝑦 ⊆ ( card ‘ 𝑇 ) ∧ 𝑦 ≺ ( cf ‘ ( card ‘ 𝑇 ) ) ) ) ) |
79 |
78
|
ralrimiv |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) → ∀ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } ( 𝑦 ⊆ ( card ‘ 𝑇 ) ∧ 𝑦 ≺ ( cf ‘ ( card ‘ 𝑇 ) ) ) ) |
80 |
|
fvex |
⊢ ( card ‘ 𝑇 ) ∈ V |
81 |
80
|
cfslb2n |
⊢ ( ( Lim ( card ‘ 𝑇 ) ∧ ∀ 𝑦 ∈ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } ( 𝑦 ⊆ ( card ‘ 𝑇 ) ∧ 𝑦 ≺ ( cf ‘ ( card ‘ 𝑇 ) ) ) ) → ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } ≺ ( cf ‘ ( card ‘ 𝑇 ) ) → ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } ≠ ( card ‘ 𝑇 ) ) ) |
82 |
39 79 81
|
syl2anc |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) → ( { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } ≺ ( cf ‘ ( card ‘ 𝑇 ) ) → ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } ≠ ( card ‘ 𝑇 ) ) ) |
83 |
34 82
|
mpd |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) → ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } ≠ ( card ‘ 𝑇 ) ) |
84 |
15
|
dfiun2 |
⊢ ∪ 𝑥 ∈ 𝐴 ( 𝑓 “ 𝑥 ) = ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } |
85 |
48
|
ralrimivw |
⊢ ( 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) → ∀ 𝑥 ∈ 𝐴 ( 𝑓 “ 𝑥 ) ⊆ ( card ‘ 𝑇 ) ) |
86 |
|
iunss |
⊢ ( ∪ 𝑥 ∈ 𝐴 ( 𝑓 “ 𝑥 ) ⊆ ( card ‘ 𝑇 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑓 “ 𝑥 ) ⊆ ( card ‘ 𝑇 ) ) |
87 |
85 86
|
sylibr |
⊢ ( 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) → ∪ 𝑥 ∈ 𝐴 ( 𝑓 “ 𝑥 ) ⊆ ( card ‘ 𝑇 ) ) |
88 |
|
fof |
⊢ ( 𝑓 : ∪ 𝐴 –onto→ ( card ‘ 𝑇 ) → 𝑓 : ∪ 𝐴 ⟶ ( card ‘ 𝑇 ) ) |
89 |
|
foelrn |
⊢ ( ( 𝑓 : ∪ 𝐴 –onto→ ( card ‘ 𝑇 ) ∧ 𝑦 ∈ ( card ‘ 𝑇 ) ) → ∃ 𝑧 ∈ ∪ 𝐴 𝑦 = ( 𝑓 ‘ 𝑧 ) ) |
90 |
89
|
ex |
⊢ ( 𝑓 : ∪ 𝐴 –onto→ ( card ‘ 𝑇 ) → ( 𝑦 ∈ ( card ‘ 𝑇 ) → ∃ 𝑧 ∈ ∪ 𝐴 𝑦 = ( 𝑓 ‘ 𝑧 ) ) ) |
91 |
|
eluni2 |
⊢ ( 𝑧 ∈ ∪ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝑥 ) |
92 |
|
nfv |
⊢ Ⅎ 𝑥 𝑓 : ∪ 𝐴 ⟶ ( card ‘ 𝑇 ) |
93 |
|
nfiu1 |
⊢ Ⅎ 𝑥 ∪ 𝑥 ∈ 𝐴 ( 𝑓 “ 𝑥 ) |
94 |
93
|
nfel2 |
⊢ Ⅎ 𝑥 ( 𝑓 ‘ 𝑧 ) ∈ ∪ 𝑥 ∈ 𝐴 ( 𝑓 “ 𝑥 ) |
95 |
|
ssiun2 |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝑓 “ 𝑥 ) ⊆ ∪ 𝑥 ∈ 𝐴 ( 𝑓 “ 𝑥 ) ) |
96 |
95
|
3ad2ant2 |
⊢ ( ( 𝑓 : ∪ 𝐴 ⟶ ( card ‘ 𝑇 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → ( 𝑓 “ 𝑥 ) ⊆ ∪ 𝑥 ∈ 𝐴 ( 𝑓 “ 𝑥 ) ) |
97 |
|
ffn |
⊢ ( 𝑓 : ∪ 𝐴 ⟶ ( card ‘ 𝑇 ) → 𝑓 Fn ∪ 𝐴 ) |
98 |
97
|
3ad2ant1 |
⊢ ( ( 𝑓 : ∪ 𝐴 ⟶ ( card ‘ 𝑇 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → 𝑓 Fn ∪ 𝐴 ) |
99 |
51
|
3ad2ant2 |
⊢ ( ( 𝑓 : ∪ 𝐴 ⟶ ( card ‘ 𝑇 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → 𝑥 ⊆ ∪ 𝐴 ) |
100 |
|
simp3 |
⊢ ( ( 𝑓 : ∪ 𝐴 ⟶ ( card ‘ 𝑇 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) |
101 |
|
fnfvima |
⊢ ( ( 𝑓 Fn ∪ 𝐴 ∧ 𝑥 ⊆ ∪ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑓 “ 𝑥 ) ) |
102 |
98 99 100 101
|
syl3anc |
⊢ ( ( 𝑓 : ∪ 𝐴 ⟶ ( card ‘ 𝑇 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → ( 𝑓 ‘ 𝑧 ) ∈ ( 𝑓 “ 𝑥 ) ) |
103 |
96 102
|
sseldd |
⊢ ( ( 𝑓 : ∪ 𝐴 ⟶ ( card ‘ 𝑇 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥 ) → ( 𝑓 ‘ 𝑧 ) ∈ ∪ 𝑥 ∈ 𝐴 ( 𝑓 “ 𝑥 ) ) |
104 |
103
|
3exp |
⊢ ( 𝑓 : ∪ 𝐴 ⟶ ( card ‘ 𝑇 ) → ( 𝑥 ∈ 𝐴 → ( 𝑧 ∈ 𝑥 → ( 𝑓 ‘ 𝑧 ) ∈ ∪ 𝑥 ∈ 𝐴 ( 𝑓 “ 𝑥 ) ) ) ) |
105 |
92 94 104
|
rexlimd |
⊢ ( 𝑓 : ∪ 𝐴 ⟶ ( card ‘ 𝑇 ) → ( ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝑥 → ( 𝑓 ‘ 𝑧 ) ∈ ∪ 𝑥 ∈ 𝐴 ( 𝑓 “ 𝑥 ) ) ) |
106 |
91 105
|
syl5bi |
⊢ ( 𝑓 : ∪ 𝐴 ⟶ ( card ‘ 𝑇 ) → ( 𝑧 ∈ ∪ 𝐴 → ( 𝑓 ‘ 𝑧 ) ∈ ∪ 𝑥 ∈ 𝐴 ( 𝑓 “ 𝑥 ) ) ) |
107 |
|
eleq1a |
⊢ ( ( 𝑓 ‘ 𝑧 ) ∈ ∪ 𝑥 ∈ 𝐴 ( 𝑓 “ 𝑥 ) → ( 𝑦 = ( 𝑓 ‘ 𝑧 ) → 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝑓 “ 𝑥 ) ) ) |
108 |
106 107
|
syl6 |
⊢ ( 𝑓 : ∪ 𝐴 ⟶ ( card ‘ 𝑇 ) → ( 𝑧 ∈ ∪ 𝐴 → ( 𝑦 = ( 𝑓 ‘ 𝑧 ) → 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝑓 “ 𝑥 ) ) ) ) |
109 |
108
|
rexlimdv |
⊢ ( 𝑓 : ∪ 𝐴 ⟶ ( card ‘ 𝑇 ) → ( ∃ 𝑧 ∈ ∪ 𝐴 𝑦 = ( 𝑓 ‘ 𝑧 ) → 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝑓 “ 𝑥 ) ) ) |
110 |
88 90 109
|
sylsyld |
⊢ ( 𝑓 : ∪ 𝐴 –onto→ ( card ‘ 𝑇 ) → ( 𝑦 ∈ ( card ‘ 𝑇 ) → 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝑓 “ 𝑥 ) ) ) |
111 |
45 110
|
syl |
⊢ ( 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) → ( 𝑦 ∈ ( card ‘ 𝑇 ) → 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝑓 “ 𝑥 ) ) ) |
112 |
111
|
ssrdv |
⊢ ( 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) → ( card ‘ 𝑇 ) ⊆ ∪ 𝑥 ∈ 𝐴 ( 𝑓 “ 𝑥 ) ) |
113 |
87 112
|
eqssd |
⊢ ( 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) → ∪ 𝑥 ∈ 𝐴 ( 𝑓 “ 𝑥 ) = ( card ‘ 𝑇 ) ) |
114 |
84 113
|
eqtr3id |
⊢ ( 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) → ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } = ( card ‘ 𝑇 ) ) |
115 |
114
|
necon3ai |
⊢ ( ∪ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 = ( 𝑓 “ 𝑥 ) } ≠ ( card ‘ 𝑇 ) → ¬ 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) |
116 |
83 115
|
syl |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ∧ 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) → ¬ 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) |
117 |
116
|
pm2.01da |
⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) → ¬ 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) |
118 |
117
|
nexdv |
⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) → ¬ ∃ 𝑓 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) |
119 |
|
entr |
⊢ ( ( ∪ 𝐴 ≈ 𝑇 ∧ 𝑇 ≈ ( card ‘ 𝑇 ) ) → ∪ 𝐴 ≈ ( card ‘ 𝑇 ) ) |
120 |
3 119
|
sylan2 |
⊢ ( ( ∪ 𝐴 ≈ 𝑇 ∧ 𝑇 ∈ Tarski ) → ∪ 𝐴 ≈ ( card ‘ 𝑇 ) ) |
121 |
|
bren |
⊢ ( ∪ 𝐴 ≈ ( card ‘ 𝑇 ) ↔ ∃ 𝑓 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) |
122 |
120 121
|
sylib |
⊢ ( ( ∪ 𝐴 ≈ 𝑇 ∧ 𝑇 ∈ Tarski ) → ∃ 𝑓 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) |
123 |
122
|
expcom |
⊢ ( 𝑇 ∈ Tarski → ( ∪ 𝐴 ≈ 𝑇 → ∃ 𝑓 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) ) |
124 |
123
|
3ad2ant1 |
⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) → ( ∪ 𝐴 ≈ 𝑇 → ∃ 𝑓 𝑓 : ∪ 𝐴 –1-1-onto→ ( card ‘ 𝑇 ) ) ) |
125 |
118 124
|
mtod |
⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) → ¬ ∪ 𝐴 ≈ 𝑇 ) |
126 |
|
uniss |
⊢ ( 𝐴 ⊆ 𝑇 → ∪ 𝐴 ⊆ ∪ 𝑇 ) |
127 |
|
df-tr |
⊢ ( Tr 𝑇 ↔ ∪ 𝑇 ⊆ 𝑇 ) |
128 |
127
|
biimpi |
⊢ ( Tr 𝑇 → ∪ 𝑇 ⊆ 𝑇 ) |
129 |
126 128
|
sylan9ss |
⊢ ( ( 𝐴 ⊆ 𝑇 ∧ Tr 𝑇 ) → ∪ 𝐴 ⊆ 𝑇 ) |
130 |
129
|
expcom |
⊢ ( Tr 𝑇 → ( 𝐴 ⊆ 𝑇 → ∪ 𝐴 ⊆ 𝑇 ) ) |
131 |
57 130
|
syld |
⊢ ( Tr 𝑇 → ( 𝐴 ∈ 𝑇 → ∪ 𝐴 ⊆ 𝑇 ) ) |
132 |
131
|
imp |
⊢ ( ( Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) → ∪ 𝐴 ⊆ 𝑇 ) |
133 |
|
tsken |
⊢ ( ( 𝑇 ∈ Tarski ∧ ∪ 𝐴 ⊆ 𝑇 ) → ( ∪ 𝐴 ≈ 𝑇 ∨ ∪ 𝐴 ∈ 𝑇 ) ) |
134 |
132 133
|
sylan2 |
⊢ ( ( 𝑇 ∈ Tarski ∧ ( Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) ) → ( ∪ 𝐴 ≈ 𝑇 ∨ ∪ 𝐴 ∈ 𝑇 ) ) |
135 |
134
|
3impb |
⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) → ( ∪ 𝐴 ≈ 𝑇 ∨ ∪ 𝐴 ∈ 𝑇 ) ) |
136 |
135
|
ord |
⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) → ( ¬ ∪ 𝐴 ≈ 𝑇 → ∪ 𝐴 ∈ 𝑇 ) ) |
137 |
125 136
|
mpd |
⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝐴 ∈ 𝑇 ) → ∪ 𝐴 ∈ 𝑇 ) |