Metamath Proof Explorer


Theorem tskurn

Description: A transitive Tarski class is closed under small unions. (Contributed by Mario Carneiro, 22-Jun-2013)

Ref Expression
Assertion tskurn ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴𝑇𝐹 : 𝐴𝑇 ) → ran 𝐹𝑇 )

Proof

Step Hyp Ref Expression
1 simp1l ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴𝑇𝐹 : 𝐴𝑇 ) → 𝑇 ∈ Tarski )
2 simp1r ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴𝑇𝐹 : 𝐴𝑇 ) → Tr 𝑇 )
3 frn ( 𝐹 : 𝐴𝑇 → ran 𝐹𝑇 )
4 3 3ad2ant3 ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴𝑇𝐹 : 𝐴𝑇 ) → ran 𝐹𝑇 )
5 tskwe2 ( 𝑇 ∈ Tarski → 𝑇 ∈ dom card )
6 1 5 syl ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴𝑇𝐹 : 𝐴𝑇 ) → 𝑇 ∈ dom card )
7 simp2 ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴𝑇𝐹 : 𝐴𝑇 ) → 𝐴𝑇 )
8 trss ( Tr 𝑇 → ( 𝐴𝑇𝐴𝑇 ) )
9 2 7 8 sylc ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴𝑇𝐹 : 𝐴𝑇 ) → 𝐴𝑇 )
10 ssnum ( ( 𝑇 ∈ dom card ∧ 𝐴𝑇 ) → 𝐴 ∈ dom card )
11 6 9 10 syl2anc ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴𝑇𝐹 : 𝐴𝑇 ) → 𝐴 ∈ dom card )
12 ffn ( 𝐹 : 𝐴𝑇𝐹 Fn 𝐴 )
13 dffn4 ( 𝐹 Fn 𝐴𝐹 : 𝐴onto→ ran 𝐹 )
14 12 13 sylib ( 𝐹 : 𝐴𝑇𝐹 : 𝐴onto→ ran 𝐹 )
15 14 3ad2ant3 ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴𝑇𝐹 : 𝐴𝑇 ) → 𝐹 : 𝐴onto→ ran 𝐹 )
16 fodomnum ( 𝐴 ∈ dom card → ( 𝐹 : 𝐴onto→ ran 𝐹 → ran 𝐹𝐴 ) )
17 11 15 16 sylc ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴𝑇𝐹 : 𝐴𝑇 ) → ran 𝐹𝐴 )
18 tsksdom ( ( 𝑇 ∈ Tarski ∧ 𝐴𝑇 ) → 𝐴𝑇 )
19 1 7 18 syl2anc ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴𝑇𝐹 : 𝐴𝑇 ) → 𝐴𝑇 )
20 domsdomtr ( ( ran 𝐹𝐴𝐴𝑇 ) → ran 𝐹𝑇 )
21 17 19 20 syl2anc ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴𝑇𝐹 : 𝐴𝑇 ) → ran 𝐹𝑇 )
22 tskssel ( ( 𝑇 ∈ Tarski ∧ ran 𝐹𝑇 ∧ ran 𝐹𝑇 ) → ran 𝐹𝑇 )
23 1 4 21 22 syl3anc ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴𝑇𝐹 : 𝐴𝑇 ) → ran 𝐹𝑇 )
24 tskuni ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ ran 𝐹𝑇 ) → ran 𝐹𝑇 )
25 1 2 23 24 syl3anc ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴𝑇𝐹 : 𝐴𝑇 ) → ran 𝐹𝑇 )