Step |
Hyp |
Ref |
Expression |
1 |
|
simp1l |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹 : 𝐴 ⟶ 𝑇 ) → 𝑇 ∈ Tarski ) |
2 |
|
simp1r |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹 : 𝐴 ⟶ 𝑇 ) → Tr 𝑇 ) |
3 |
|
frn |
⊢ ( 𝐹 : 𝐴 ⟶ 𝑇 → ran 𝐹 ⊆ 𝑇 ) |
4 |
3
|
3ad2ant3 |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹 : 𝐴 ⟶ 𝑇 ) → ran 𝐹 ⊆ 𝑇 ) |
5 |
|
tskwe2 |
⊢ ( 𝑇 ∈ Tarski → 𝑇 ∈ dom card ) |
6 |
1 5
|
syl |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹 : 𝐴 ⟶ 𝑇 ) → 𝑇 ∈ dom card ) |
7 |
|
simp2 |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹 : 𝐴 ⟶ 𝑇 ) → 𝐴 ∈ 𝑇 ) |
8 |
|
trss |
⊢ ( Tr 𝑇 → ( 𝐴 ∈ 𝑇 → 𝐴 ⊆ 𝑇 ) ) |
9 |
2 7 8
|
sylc |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹 : 𝐴 ⟶ 𝑇 ) → 𝐴 ⊆ 𝑇 ) |
10 |
|
ssnum |
⊢ ( ( 𝑇 ∈ dom card ∧ 𝐴 ⊆ 𝑇 ) → 𝐴 ∈ dom card ) |
11 |
6 9 10
|
syl2anc |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹 : 𝐴 ⟶ 𝑇 ) → 𝐴 ∈ dom card ) |
12 |
|
ffn |
⊢ ( 𝐹 : 𝐴 ⟶ 𝑇 → 𝐹 Fn 𝐴 ) |
13 |
|
dffn4 |
⊢ ( 𝐹 Fn 𝐴 ↔ 𝐹 : 𝐴 –onto→ ran 𝐹 ) |
14 |
12 13
|
sylib |
⊢ ( 𝐹 : 𝐴 ⟶ 𝑇 → 𝐹 : 𝐴 –onto→ ran 𝐹 ) |
15 |
14
|
3ad2ant3 |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹 : 𝐴 ⟶ 𝑇 ) → 𝐹 : 𝐴 –onto→ ran 𝐹 ) |
16 |
|
fodomnum |
⊢ ( 𝐴 ∈ dom card → ( 𝐹 : 𝐴 –onto→ ran 𝐹 → ran 𝐹 ≼ 𝐴 ) ) |
17 |
11 15 16
|
sylc |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹 : 𝐴 ⟶ 𝑇 ) → ran 𝐹 ≼ 𝐴 ) |
18 |
|
tsksdom |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ) → 𝐴 ≺ 𝑇 ) |
19 |
1 7 18
|
syl2anc |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹 : 𝐴 ⟶ 𝑇 ) → 𝐴 ≺ 𝑇 ) |
20 |
|
domsdomtr |
⊢ ( ( ran 𝐹 ≼ 𝐴 ∧ 𝐴 ≺ 𝑇 ) → ran 𝐹 ≺ 𝑇 ) |
21 |
17 19 20
|
syl2anc |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹 : 𝐴 ⟶ 𝑇 ) → ran 𝐹 ≺ 𝑇 ) |
22 |
|
tskssel |
⊢ ( ( 𝑇 ∈ Tarski ∧ ran 𝐹 ⊆ 𝑇 ∧ ran 𝐹 ≺ 𝑇 ) → ran 𝐹 ∈ 𝑇 ) |
23 |
1 4 21 22
|
syl3anc |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹 : 𝐴 ⟶ 𝑇 ) → ran 𝐹 ∈ 𝑇 ) |
24 |
|
tskuni |
⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ ran 𝐹 ∈ 𝑇 ) → ∪ ran 𝐹 ∈ 𝑇 ) |
25 |
1 2 23 24
|
syl3anc |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝐴 ∈ 𝑇 ∧ 𝐹 : 𝐴 ⟶ 𝑇 ) → ∪ ran 𝐹 ∈ 𝑇 ) |