Metamath Proof Explorer


Theorem tskwe

Description: A Tarski set is well-orderable. (Contributed by Mario Carneiro, 19-Apr-2013) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion tskwe ( ( 𝐴𝑉 ∧ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ⊆ 𝐴 ) → 𝐴 ∈ dom card )

Proof

Step Hyp Ref Expression
1 pwexg ( 𝐴𝑉 → 𝒫 𝐴 ∈ V )
2 rabexg ( 𝒫 𝐴 ∈ V → { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ∈ V )
3 incom ( { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ∩ On ) = ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } )
4 inex1g ( { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ∈ V → ( { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ∩ On ) ∈ V )
5 3 4 eqeltrrid ( { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ∈ V → ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ∈ V )
6 inss1 ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ⊆ On
7 6 sseli ( 𝑧 ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) → 𝑧 ∈ On )
8 onelon ( ( 𝑧 ∈ On ∧ 𝑦𝑧 ) → 𝑦 ∈ On )
9 8 ancoms ( ( 𝑦𝑧𝑧 ∈ On ) → 𝑦 ∈ On )
10 7 9 sylan2 ( ( 𝑦𝑧𝑧 ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ) → 𝑦 ∈ On )
11 onelss ( 𝑧 ∈ On → ( 𝑦𝑧𝑦𝑧 ) )
12 11 impcom ( ( 𝑦𝑧𝑧 ∈ On ) → 𝑦𝑧 )
13 7 12 sylan2 ( ( 𝑦𝑧𝑧 ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ) → 𝑦𝑧 )
14 inss2 ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ⊆ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 }
15 14 sseli ( 𝑧 ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) → 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } )
16 breq1 ( 𝑥 = 𝑧 → ( 𝑥𝐴𝑧𝐴 ) )
17 16 elrab ( 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ↔ ( 𝑧 ∈ 𝒫 𝐴𝑧𝐴 ) )
18 15 17 sylib ( 𝑧 ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) → ( 𝑧 ∈ 𝒫 𝐴𝑧𝐴 ) )
19 18 simpld ( 𝑧 ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) → 𝑧 ∈ 𝒫 𝐴 )
20 19 elpwid ( 𝑧 ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) → 𝑧𝐴 )
21 20 adantl ( ( 𝑦𝑧𝑧 ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ) → 𝑧𝐴 )
22 13 21 sstrd ( ( 𝑦𝑧𝑧 ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ) → 𝑦𝐴 )
23 velpw ( 𝑦 ∈ 𝒫 𝐴𝑦𝐴 )
24 22 23 sylibr ( ( 𝑦𝑧𝑧 ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ) → 𝑦 ∈ 𝒫 𝐴 )
25 vex 𝑧 ∈ V
26 ssdomg ( 𝑧 ∈ V → ( 𝑦𝑧𝑦𝑧 ) )
27 25 13 26 mpsyl ( ( 𝑦𝑧𝑧 ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ) → 𝑦𝑧 )
28 18 simprd ( 𝑧 ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) → 𝑧𝐴 )
29 28 adantl ( ( 𝑦𝑧𝑧 ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ) → 𝑧𝐴 )
30 domsdomtr ( ( 𝑦𝑧𝑧𝐴 ) → 𝑦𝐴 )
31 27 29 30 syl2anc ( ( 𝑦𝑧𝑧 ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ) → 𝑦𝐴 )
32 breq1 ( 𝑥 = 𝑦 → ( 𝑥𝐴𝑦𝐴 ) )
33 32 elrab ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ↔ ( 𝑦 ∈ 𝒫 𝐴𝑦𝐴 ) )
34 24 31 33 sylanbrc ( ( 𝑦𝑧𝑧 ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ) → 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } )
35 10 34 elind ( ( 𝑦𝑧𝑧 ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ) → 𝑦 ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) )
36 35 gen2 𝑦𝑧 ( ( 𝑦𝑧𝑧 ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ) → 𝑦 ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) )
37 dftr2 ( Tr ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ↔ ∀ 𝑦𝑧 ( ( 𝑦𝑧𝑧 ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ) → 𝑦 ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ) )
38 36 37 mpbir Tr ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } )
39 ordon Ord On
40 trssord ( ( Tr ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ∧ ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ⊆ On ∧ Ord On ) → Ord ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) )
41 38 6 39 40 mp3an Ord ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } )
42 elong ( ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ∈ V → ( ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ∈ On ↔ Ord ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ) )
43 41 42 mpbiri ( ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ∈ V → ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ∈ On )
44 1 2 5 43 4syl ( 𝐴𝑉 → ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ∈ On )
45 44 adantr ( ( 𝐴𝑉 ∧ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ⊆ 𝐴 ) → ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ∈ On )
46 simpr ( ( 𝐴𝑉 ∧ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ⊆ 𝐴 ) → { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ⊆ 𝐴 )
47 14 46 sstrid ( ( 𝐴𝑉 ∧ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ⊆ 𝐴 ) → ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ⊆ 𝐴 )
48 ssdomg ( 𝐴𝑉 → ( ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ⊆ 𝐴 → ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ≼ 𝐴 ) )
49 48 adantr ( ( 𝐴𝑉 ∧ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ⊆ 𝐴 ) → ( ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ⊆ 𝐴 → ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ≼ 𝐴 ) )
50 47 49 mpd ( ( 𝐴𝑉 ∧ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ⊆ 𝐴 ) → ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ≼ 𝐴 )
51 ordirr ( Ord ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) → ¬ ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) )
52 41 51 mp1i ( ( 𝐴𝑉 ∧ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ⊆ 𝐴 ) → ¬ ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) )
53 44 3ad2ant1 ( ( 𝐴𝑉 ∧ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ⊆ 𝐴 ∧ ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ≺ 𝐴 ) → ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ∈ On )
54 elpw2g ( 𝐴𝑉 → ( ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ∈ 𝒫 𝐴 ↔ ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ⊆ 𝐴 ) )
55 54 adantr ( ( 𝐴𝑉 ∧ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ⊆ 𝐴 ) → ( ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ∈ 𝒫 𝐴 ↔ ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ⊆ 𝐴 ) )
56 47 55 mpbird ( ( 𝐴𝑉 ∧ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ⊆ 𝐴 ) → ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ∈ 𝒫 𝐴 )
57 56 3adant3 ( ( 𝐴𝑉 ∧ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ⊆ 𝐴 ∧ ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ≺ 𝐴 ) → ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ∈ 𝒫 𝐴 )
58 simp3 ( ( 𝐴𝑉 ∧ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ⊆ 𝐴 ∧ ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ≺ 𝐴 ) → ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ≺ 𝐴 )
59 nfcv 𝑥 On
60 nfrab1 𝑥 { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 }
61 59 60 nfin 𝑥 ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } )
62 nfcv 𝑥 𝒫 𝐴
63 nfcv 𝑥
64 nfcv 𝑥 𝐴
65 61 63 64 nfbr 𝑥 ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ≺ 𝐴
66 breq1 ( 𝑥 = ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) → ( 𝑥𝐴 ↔ ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ≺ 𝐴 ) )
67 61 62 65 66 elrabf ( ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ∈ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ↔ ( ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ∈ 𝒫 𝐴 ∧ ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ≺ 𝐴 ) )
68 57 58 67 sylanbrc ( ( 𝐴𝑉 ∧ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ⊆ 𝐴 ∧ ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ≺ 𝐴 ) → ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ∈ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } )
69 53 68 elind ( ( 𝐴𝑉 ∧ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ⊆ 𝐴 ∧ ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ≺ 𝐴 ) → ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) )
70 69 3expia ( ( 𝐴𝑉 ∧ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ⊆ 𝐴 ) → ( ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ≺ 𝐴 → ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ) )
71 52 70 mtod ( ( 𝐴𝑉 ∧ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ⊆ 𝐴 ) → ¬ ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ≺ 𝐴 )
72 bren2 ( ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ≈ 𝐴 ↔ ( ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ≼ 𝐴 ∧ ¬ ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ≺ 𝐴 ) )
73 50 71 72 sylanbrc ( ( 𝐴𝑉 ∧ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ⊆ 𝐴 ) → ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ≈ 𝐴 )
74 isnumi ( ( ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ∈ On ∧ ( On ∩ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ) ≈ 𝐴 ) → 𝐴 ∈ dom card )
75 45 73 74 syl2anc ( ( 𝐴𝑉 ∧ { 𝑥 ∈ 𝒫 𝐴𝑥𝐴 } ⊆ 𝐴 ) → 𝐴 ∈ dom card )