| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwexg |
⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V ) |
| 2 |
|
rabexg |
⊢ ( 𝒫 𝐴 ∈ V → { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ∈ V ) |
| 3 |
|
incom |
⊢ ( { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ∩ On ) = ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) |
| 4 |
|
inex1g |
⊢ ( { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ∈ V → ( { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ∩ On ) ∈ V ) |
| 5 |
3 4
|
eqeltrrid |
⊢ ( { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ∈ V → ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ∈ V ) |
| 6 |
|
inss1 |
⊢ ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ⊆ On |
| 7 |
6
|
sseli |
⊢ ( 𝑧 ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) → 𝑧 ∈ On ) |
| 8 |
|
onelon |
⊢ ( ( 𝑧 ∈ On ∧ 𝑦 ∈ 𝑧 ) → 𝑦 ∈ On ) |
| 9 |
8
|
ancoms |
⊢ ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ On ) → 𝑦 ∈ On ) |
| 10 |
7 9
|
sylan2 |
⊢ ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ) → 𝑦 ∈ On ) |
| 11 |
|
onelss |
⊢ ( 𝑧 ∈ On → ( 𝑦 ∈ 𝑧 → 𝑦 ⊆ 𝑧 ) ) |
| 12 |
11
|
impcom |
⊢ ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ On ) → 𝑦 ⊆ 𝑧 ) |
| 13 |
7 12
|
sylan2 |
⊢ ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ) → 𝑦 ⊆ 𝑧 ) |
| 14 |
|
inss2 |
⊢ ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } |
| 15 |
14
|
sseli |
⊢ ( 𝑧 ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) → 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) |
| 16 |
|
breq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ≺ 𝐴 ↔ 𝑧 ≺ 𝐴 ) ) |
| 17 |
16
|
elrab |
⊢ ( 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ↔ ( 𝑧 ∈ 𝒫 𝐴 ∧ 𝑧 ≺ 𝐴 ) ) |
| 18 |
15 17
|
sylib |
⊢ ( 𝑧 ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) → ( 𝑧 ∈ 𝒫 𝐴 ∧ 𝑧 ≺ 𝐴 ) ) |
| 19 |
18
|
simpld |
⊢ ( 𝑧 ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) → 𝑧 ∈ 𝒫 𝐴 ) |
| 20 |
19
|
elpwid |
⊢ ( 𝑧 ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) → 𝑧 ⊆ 𝐴 ) |
| 21 |
20
|
adantl |
⊢ ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ) → 𝑧 ⊆ 𝐴 ) |
| 22 |
13 21
|
sstrd |
⊢ ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ) → 𝑦 ⊆ 𝐴 ) |
| 23 |
|
velpw |
⊢ ( 𝑦 ∈ 𝒫 𝐴 ↔ 𝑦 ⊆ 𝐴 ) |
| 24 |
22 23
|
sylibr |
⊢ ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ) → 𝑦 ∈ 𝒫 𝐴 ) |
| 25 |
|
vex |
⊢ 𝑧 ∈ V |
| 26 |
|
ssdomg |
⊢ ( 𝑧 ∈ V → ( 𝑦 ⊆ 𝑧 → 𝑦 ≼ 𝑧 ) ) |
| 27 |
25 13 26
|
mpsyl |
⊢ ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ) → 𝑦 ≼ 𝑧 ) |
| 28 |
18
|
simprd |
⊢ ( 𝑧 ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) → 𝑧 ≺ 𝐴 ) |
| 29 |
28
|
adantl |
⊢ ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ) → 𝑧 ≺ 𝐴 ) |
| 30 |
|
domsdomtr |
⊢ ( ( 𝑦 ≼ 𝑧 ∧ 𝑧 ≺ 𝐴 ) → 𝑦 ≺ 𝐴 ) |
| 31 |
27 29 30
|
syl2anc |
⊢ ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ) → 𝑦 ≺ 𝐴 ) |
| 32 |
|
breq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ≺ 𝐴 ↔ 𝑦 ≺ 𝐴 ) ) |
| 33 |
32
|
elrab |
⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ↔ ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑦 ≺ 𝐴 ) ) |
| 34 |
24 31 33
|
sylanbrc |
⊢ ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ) → 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) |
| 35 |
10 34
|
elind |
⊢ ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ) → 𝑦 ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ) |
| 36 |
35
|
gen2 |
⊢ ∀ 𝑦 ∀ 𝑧 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ) → 𝑦 ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ) |
| 37 |
|
dftr2 |
⊢ ( Tr ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ↔ ∀ 𝑦 ∀ 𝑧 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ) → 𝑦 ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ) ) |
| 38 |
36 37
|
mpbir |
⊢ Tr ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) |
| 39 |
|
ordon |
⊢ Ord On |
| 40 |
|
trssord |
⊢ ( ( Tr ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ∧ ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ⊆ On ∧ Ord On ) → Ord ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ) |
| 41 |
38 6 39 40
|
mp3an |
⊢ Ord ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) |
| 42 |
|
elong |
⊢ ( ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ∈ V → ( ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ∈ On ↔ Ord ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ) ) |
| 43 |
41 42
|
mpbiri |
⊢ ( ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ∈ V → ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ∈ On ) |
| 44 |
1 2 5 43
|
4syl |
⊢ ( 𝐴 ∈ 𝑉 → ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ∈ On ) |
| 45 |
44
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ⊆ 𝐴 ) → ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ∈ On ) |
| 46 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ⊆ 𝐴 ) → { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ⊆ 𝐴 ) |
| 47 |
14 46
|
sstrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ⊆ 𝐴 ) → ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ⊆ 𝐴 ) |
| 48 |
|
ssdomg |
⊢ ( 𝐴 ∈ 𝑉 → ( ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ⊆ 𝐴 → ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ≼ 𝐴 ) ) |
| 49 |
48
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ⊆ 𝐴 ) → ( ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ⊆ 𝐴 → ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ≼ 𝐴 ) ) |
| 50 |
47 49
|
mpd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ⊆ 𝐴 ) → ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ≼ 𝐴 ) |
| 51 |
|
ordirr |
⊢ ( Ord ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) → ¬ ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ) |
| 52 |
41 51
|
mp1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ⊆ 𝐴 ) → ¬ ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ) |
| 53 |
44
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ⊆ 𝐴 ∧ ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ≺ 𝐴 ) → ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ∈ On ) |
| 54 |
|
elpw2g |
⊢ ( 𝐴 ∈ 𝑉 → ( ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ∈ 𝒫 𝐴 ↔ ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ⊆ 𝐴 ) ) |
| 55 |
54
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ⊆ 𝐴 ) → ( ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ∈ 𝒫 𝐴 ↔ ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ⊆ 𝐴 ) ) |
| 56 |
47 55
|
mpbird |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ⊆ 𝐴 ) → ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ∈ 𝒫 𝐴 ) |
| 57 |
56
|
3adant3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ⊆ 𝐴 ∧ ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ≺ 𝐴 ) → ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ∈ 𝒫 𝐴 ) |
| 58 |
|
simp3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ⊆ 𝐴 ∧ ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ≺ 𝐴 ) → ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ≺ 𝐴 ) |
| 59 |
|
nfcv |
⊢ Ⅎ 𝑥 On |
| 60 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } |
| 61 |
59 60
|
nfin |
⊢ Ⅎ 𝑥 ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) |
| 62 |
|
nfcv |
⊢ Ⅎ 𝑥 𝒫 𝐴 |
| 63 |
|
nfcv |
⊢ Ⅎ 𝑥 ≺ |
| 64 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
| 65 |
61 63 64
|
nfbr |
⊢ Ⅎ 𝑥 ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ≺ 𝐴 |
| 66 |
|
breq1 |
⊢ ( 𝑥 = ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) → ( 𝑥 ≺ 𝐴 ↔ ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ≺ 𝐴 ) ) |
| 67 |
61 62 65 66
|
elrabf |
⊢ ( ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ↔ ( ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ∈ 𝒫 𝐴 ∧ ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ≺ 𝐴 ) ) |
| 68 |
57 58 67
|
sylanbrc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ⊆ 𝐴 ∧ ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ≺ 𝐴 ) → ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) |
| 69 |
53 68
|
elind |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ⊆ 𝐴 ∧ ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ≺ 𝐴 ) → ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ) |
| 70 |
69
|
3expia |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ⊆ 𝐴 ) → ( ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ≺ 𝐴 → ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ∈ ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ) ) |
| 71 |
52 70
|
mtod |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ⊆ 𝐴 ) → ¬ ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ≺ 𝐴 ) |
| 72 |
|
bren2 |
⊢ ( ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ≈ 𝐴 ↔ ( ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ≼ 𝐴 ∧ ¬ ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ≺ 𝐴 ) ) |
| 73 |
50 71 72
|
sylanbrc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ⊆ 𝐴 ) → ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ≈ 𝐴 ) |
| 74 |
|
isnumi |
⊢ ( ( ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ∈ On ∧ ( On ∩ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ) ≈ 𝐴 ) → 𝐴 ∈ dom card ) |
| 75 |
45 73 74
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ { 𝑥 ∈ 𝒫 𝐴 ∣ 𝑥 ≺ 𝐴 } ⊆ 𝐴 ) → 𝐴 ∈ dom card ) |