Metamath Proof Explorer


Theorem tskwe2

Description: A Tarski class is well-orderable. (Contributed by Mario Carneiro, 20-Jun-2013)

Ref Expression
Assertion tskwe2 ( 𝑇 ∈ Tarski → 𝑇 ∈ dom card )

Proof

Step Hyp Ref Expression
1 elpwi ( 𝑦 ∈ 𝒫 𝑇𝑦𝑇 )
2 tskssel ( ( 𝑇 ∈ Tarski ∧ 𝑦𝑇𝑦𝑇 ) → 𝑦𝑇 )
3 2 3exp ( 𝑇 ∈ Tarski → ( 𝑦𝑇 → ( 𝑦𝑇𝑦𝑇 ) ) )
4 1 3 syl5 ( 𝑇 ∈ Tarski → ( 𝑦 ∈ 𝒫 𝑇 → ( 𝑦𝑇𝑦𝑇 ) ) )
5 4 ralrimiv ( 𝑇 ∈ Tarski → ∀ 𝑦 ∈ 𝒫 𝑇 ( 𝑦𝑇𝑦𝑇 ) )
6 rabss ( { 𝑦 ∈ 𝒫 𝑇𝑦𝑇 } ⊆ 𝑇 ↔ ∀ 𝑦 ∈ 𝒫 𝑇 ( 𝑦𝑇𝑦𝑇 ) )
7 5 6 sylibr ( 𝑇 ∈ Tarski → { 𝑦 ∈ 𝒫 𝑇𝑦𝑇 } ⊆ 𝑇 )
8 tskwe ( ( 𝑇 ∈ Tarski ∧ { 𝑦 ∈ 𝒫 𝑇𝑦𝑇 } ⊆ 𝑇 ) → 𝑇 ∈ dom card )
9 7 8 mpdan ( 𝑇 ∈ Tarski → 𝑇 ∈ dom card )