Step |
Hyp |
Ref |
Expression |
1 |
|
elpwi |
⊢ ( 𝑦 ∈ 𝒫 𝑇 → 𝑦 ⊆ 𝑇 ) |
2 |
|
tskssel |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑦 ⊆ 𝑇 ∧ 𝑦 ≺ 𝑇 ) → 𝑦 ∈ 𝑇 ) |
3 |
2
|
3exp |
⊢ ( 𝑇 ∈ Tarski → ( 𝑦 ⊆ 𝑇 → ( 𝑦 ≺ 𝑇 → 𝑦 ∈ 𝑇 ) ) ) |
4 |
1 3
|
syl5 |
⊢ ( 𝑇 ∈ Tarski → ( 𝑦 ∈ 𝒫 𝑇 → ( 𝑦 ≺ 𝑇 → 𝑦 ∈ 𝑇 ) ) ) |
5 |
4
|
ralrimiv |
⊢ ( 𝑇 ∈ Tarski → ∀ 𝑦 ∈ 𝒫 𝑇 ( 𝑦 ≺ 𝑇 → 𝑦 ∈ 𝑇 ) ) |
6 |
|
rabss |
⊢ ( { 𝑦 ∈ 𝒫 𝑇 ∣ 𝑦 ≺ 𝑇 } ⊆ 𝑇 ↔ ∀ 𝑦 ∈ 𝒫 𝑇 ( 𝑦 ≺ 𝑇 → 𝑦 ∈ 𝑇 ) ) |
7 |
5 6
|
sylibr |
⊢ ( 𝑇 ∈ Tarski → { 𝑦 ∈ 𝒫 𝑇 ∣ 𝑦 ≺ 𝑇 } ⊆ 𝑇 ) |
8 |
|
tskwe |
⊢ ( ( 𝑇 ∈ Tarski ∧ { 𝑦 ∈ 𝒫 𝑇 ∣ 𝑦 ≺ 𝑇 } ⊆ 𝑇 ) → 𝑇 ∈ dom card ) |
9 |
7 8
|
mpdan |
⊢ ( 𝑇 ∈ Tarski → 𝑇 ∈ dom card ) |