Metamath Proof Explorer


Theorem tskwun

Description: A nonempty transitive Tarski class is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion tskwun ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅ ) → 𝑇 ∈ WUni )

Proof

Step Hyp Ref Expression
1 simp2 ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅ ) → Tr 𝑇 )
2 simp3 ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅ ) → 𝑇 ≠ ∅ )
3 tskuni ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇𝑥𝑇 ) → 𝑥𝑇 )
4 3 3expa ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝑥𝑇 ) → 𝑥𝑇 )
5 4 3adantl3 ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅ ) ∧ 𝑥𝑇 ) → 𝑥𝑇 )
6 tskpw ( ( 𝑇 ∈ Tarski ∧ 𝑥𝑇 ) → 𝒫 𝑥𝑇 )
7 6 3ad2antl1 ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅ ) ∧ 𝑥𝑇 ) → 𝒫 𝑥𝑇 )
8 tskpr ( ( 𝑇 ∈ Tarski ∧ 𝑥𝑇𝑦𝑇 ) → { 𝑥 , 𝑦 } ∈ 𝑇 )
9 8 3exp ( 𝑇 ∈ Tarski → ( 𝑥𝑇 → ( 𝑦𝑇 → { 𝑥 , 𝑦 } ∈ 𝑇 ) ) )
10 9 3ad2ant1 ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅ ) → ( 𝑥𝑇 → ( 𝑦𝑇 → { 𝑥 , 𝑦 } ∈ 𝑇 ) ) )
11 10 imp31 ( ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅ ) ∧ 𝑥𝑇 ) ∧ 𝑦𝑇 ) → { 𝑥 , 𝑦 } ∈ 𝑇 )
12 11 ralrimiva ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅ ) ∧ 𝑥𝑇 ) → ∀ 𝑦𝑇 { 𝑥 , 𝑦 } ∈ 𝑇 )
13 5 7 12 3jca ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅ ) ∧ 𝑥𝑇 ) → ( 𝑥𝑇 ∧ 𝒫 𝑥𝑇 ∧ ∀ 𝑦𝑇 { 𝑥 , 𝑦 } ∈ 𝑇 ) )
14 13 ralrimiva ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅ ) → ∀ 𝑥𝑇 ( 𝑥𝑇 ∧ 𝒫 𝑥𝑇 ∧ ∀ 𝑦𝑇 { 𝑥 , 𝑦 } ∈ 𝑇 ) )
15 iswun ( 𝑇 ∈ Tarski → ( 𝑇 ∈ WUni ↔ ( Tr 𝑇𝑇 ≠ ∅ ∧ ∀ 𝑥𝑇 ( 𝑥𝑇 ∧ 𝒫 𝑥𝑇 ∧ ∀ 𝑦𝑇 { 𝑥 , 𝑦 } ∈ 𝑇 ) ) ) )
16 15 3ad2ant1 ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅ ) → ( 𝑇 ∈ WUni ↔ ( Tr 𝑇𝑇 ≠ ∅ ∧ ∀ 𝑥𝑇 ( 𝑥𝑇 ∧ 𝒫 𝑥𝑇 ∧ ∀ 𝑦𝑇 { 𝑥 , 𝑦 } ∈ 𝑇 ) ) ) )
17 1 2 14 16 mpbir3and ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇𝑇 ≠ ∅ ) → 𝑇 ∈ WUni )