Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅ ) → Tr 𝑇 ) |
2 |
|
simp3 |
⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅ ) → 𝑇 ≠ ∅ ) |
3 |
|
tskuni |
⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑥 ∈ 𝑇 ) → ∪ 𝑥 ∈ 𝑇 ) |
4 |
3
|
3expa |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ) ∧ 𝑥 ∈ 𝑇 ) → ∪ 𝑥 ∈ 𝑇 ) |
5 |
4
|
3adantl3 |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅ ) ∧ 𝑥 ∈ 𝑇 ) → ∪ 𝑥 ∈ 𝑇 ) |
6 |
|
tskpw |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ) → 𝒫 𝑥 ∈ 𝑇 ) |
7 |
6
|
3ad2antl1 |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅ ) ∧ 𝑥 ∈ 𝑇 ) → 𝒫 𝑥 ∈ 𝑇 ) |
8 |
|
tskpr |
⊢ ( ( 𝑇 ∈ Tarski ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ) → { 𝑥 , 𝑦 } ∈ 𝑇 ) |
9 |
8
|
3exp |
⊢ ( 𝑇 ∈ Tarski → ( 𝑥 ∈ 𝑇 → ( 𝑦 ∈ 𝑇 → { 𝑥 , 𝑦 } ∈ 𝑇 ) ) ) |
10 |
9
|
3ad2ant1 |
⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅ ) → ( 𝑥 ∈ 𝑇 → ( 𝑦 ∈ 𝑇 → { 𝑥 , 𝑦 } ∈ 𝑇 ) ) ) |
11 |
10
|
imp31 |
⊢ ( ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅ ) ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → { 𝑥 , 𝑦 } ∈ 𝑇 ) |
12 |
11
|
ralrimiva |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅ ) ∧ 𝑥 ∈ 𝑇 ) → ∀ 𝑦 ∈ 𝑇 { 𝑥 , 𝑦 } ∈ 𝑇 ) |
13 |
5 7 12
|
3jca |
⊢ ( ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅ ) ∧ 𝑥 ∈ 𝑇 ) → ( ∪ 𝑥 ∈ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇 ∧ ∀ 𝑦 ∈ 𝑇 { 𝑥 , 𝑦 } ∈ 𝑇 ) ) |
14 |
13
|
ralrimiva |
⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅ ) → ∀ 𝑥 ∈ 𝑇 ( ∪ 𝑥 ∈ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇 ∧ ∀ 𝑦 ∈ 𝑇 { 𝑥 , 𝑦 } ∈ 𝑇 ) ) |
15 |
|
iswun |
⊢ ( 𝑇 ∈ Tarski → ( 𝑇 ∈ WUni ↔ ( Tr 𝑇 ∧ 𝑇 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑇 ( ∪ 𝑥 ∈ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇 ∧ ∀ 𝑦 ∈ 𝑇 { 𝑥 , 𝑦 } ∈ 𝑇 ) ) ) ) |
16 |
15
|
3ad2ant1 |
⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅ ) → ( 𝑇 ∈ WUni ↔ ( Tr 𝑇 ∧ 𝑇 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑇 ( ∪ 𝑥 ∈ 𝑇 ∧ 𝒫 𝑥 ∈ 𝑇 ∧ ∀ 𝑦 ∈ 𝑇 { 𝑥 , 𝑦 } ∈ 𝑇 ) ) ) ) |
17 |
1 2 14 16
|
mpbir3and |
⊢ ( ( 𝑇 ∈ Tarski ∧ Tr 𝑇 ∧ 𝑇 ≠ ∅ ) → 𝑇 ∈ WUni ) |