Step |
Hyp |
Ref |
Expression |
1 |
|
tsmscl.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
tsmscl.1 |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
3 |
|
tsmscl.2 |
⊢ ( 𝜑 → 𝐺 ∈ TopSp ) |
4 |
|
tsmscl.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
5 |
|
tsmscl.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
6 |
|
eqid |
⊢ ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝐺 ) |
7 |
|
eqid |
⊢ ( 𝒫 𝐴 ∩ Fin ) = ( 𝒫 𝐴 ∩ Fin ) |
8 |
1 6 7 2 3 4 5
|
eltsms |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑤 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑥 ∈ 𝑤 → ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑤 ) ) ) ) ) |
9 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑤 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑥 ∈ 𝑤 → ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑤 ) ) ) → 𝑥 ∈ 𝐵 ) |
10 |
8 9
|
syl6bi |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) → 𝑥 ∈ 𝐵 ) ) |
11 |
10
|
ssrdv |
⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) ⊆ 𝐵 ) |