Metamath Proof Explorer


Theorem tsmscl

Description: A sum in a topological group is an element of the group. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses tsmscl.b 𝐵 = ( Base ‘ 𝐺 )
tsmscl.1 ( 𝜑𝐺 ∈ CMnd )
tsmscl.2 ( 𝜑𝐺 ∈ TopSp )
tsmscl.a ( 𝜑𝐴𝑉 )
tsmscl.f ( 𝜑𝐹 : 𝐴𝐵 )
Assertion tsmscl ( 𝜑 → ( 𝐺 tsums 𝐹 ) ⊆ 𝐵 )

Proof

Step Hyp Ref Expression
1 tsmscl.b 𝐵 = ( Base ‘ 𝐺 )
2 tsmscl.1 ( 𝜑𝐺 ∈ CMnd )
3 tsmscl.2 ( 𝜑𝐺 ∈ TopSp )
4 tsmscl.a ( 𝜑𝐴𝑉 )
5 tsmscl.f ( 𝜑𝐹 : 𝐴𝐵 )
6 eqid ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝐺 )
7 eqid ( 𝒫 𝐴 ∩ Fin ) = ( 𝒫 𝐴 ∩ Fin )
8 1 6 7 2 3 4 5 eltsms ( 𝜑 → ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ↔ ( 𝑥𝐵 ∧ ∀ 𝑤 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑥𝑤 → ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑧𝑦 → ( 𝐺 Σg ( 𝐹𝑦 ) ) ∈ 𝑤 ) ) ) ) )
9 simpl ( ( 𝑥𝐵 ∧ ∀ 𝑤 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑥𝑤 → ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑧𝑦 → ( 𝐺 Σg ( 𝐹𝑦 ) ) ∈ 𝑤 ) ) ) → 𝑥𝐵 )
10 8 9 syl6bi ( 𝜑 → ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) → 𝑥𝐵 ) )
11 10 ssrdv ( 𝜑 → ( 𝐺 tsums 𝐹 ) ⊆ 𝐵 )