| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tsmsfbas.s | ⊢ 𝑆  =  ( 𝒫  𝐴  ∩  Fin ) | 
						
							| 2 |  | tsmsfbas.f | ⊢ 𝐹  =  ( 𝑧  ∈  𝑆  ↦  { 𝑦  ∈  𝑆  ∣  𝑧  ⊆  𝑦 } ) | 
						
							| 3 |  | tsmsfbas.l | ⊢ 𝐿  =  ran  𝐹 | 
						
							| 4 |  | tsmsfbas.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑊 ) | 
						
							| 5 |  | elex | ⊢ ( 𝐴  ∈  𝑊  →  𝐴  ∈  V ) | 
						
							| 6 |  | ssrab2 | ⊢ { 𝑦  ∈  𝑆  ∣  𝑧  ⊆  𝑦 }  ⊆  𝑆 | 
						
							| 7 |  | pwexg | ⊢ ( 𝐴  ∈  V  →  𝒫  𝐴  ∈  V ) | 
						
							| 8 |  | inex1g | ⊢ ( 𝒫  𝐴  ∈  V  →  ( 𝒫  𝐴  ∩  Fin )  ∈  V ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝐴  ∈  V  →  ( 𝒫  𝐴  ∩  Fin )  ∈  V ) | 
						
							| 10 | 1 9 | eqeltrid | ⊢ ( 𝐴  ∈  V  →  𝑆  ∈  V ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝐴  ∈  V  ∧  𝑧  ∈  𝑆 )  →  𝑆  ∈  V ) | 
						
							| 12 |  | elpw2g | ⊢ ( 𝑆  ∈  V  →  ( { 𝑦  ∈  𝑆  ∣  𝑧  ⊆  𝑦 }  ∈  𝒫  𝑆  ↔  { 𝑦  ∈  𝑆  ∣  𝑧  ⊆  𝑦 }  ⊆  𝑆 ) ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( 𝐴  ∈  V  ∧  𝑧  ∈  𝑆 )  →  ( { 𝑦  ∈  𝑆  ∣  𝑧  ⊆  𝑦 }  ∈  𝒫  𝑆  ↔  { 𝑦  ∈  𝑆  ∣  𝑧  ⊆  𝑦 }  ⊆  𝑆 ) ) | 
						
							| 14 | 6 13 | mpbiri | ⊢ ( ( 𝐴  ∈  V  ∧  𝑧  ∈  𝑆 )  →  { 𝑦  ∈  𝑆  ∣  𝑧  ⊆  𝑦 }  ∈  𝒫  𝑆 ) | 
						
							| 15 | 14 2 | fmptd | ⊢ ( 𝐴  ∈  V  →  𝐹 : 𝑆 ⟶ 𝒫  𝑆 ) | 
						
							| 16 | 15 | frnd | ⊢ ( 𝐴  ∈  V  →  ran  𝐹  ⊆  𝒫  𝑆 ) | 
						
							| 17 |  | 0ss | ⊢ ∅  ⊆  𝐴 | 
						
							| 18 |  | 0fi | ⊢ ∅  ∈  Fin | 
						
							| 19 |  | elfpw | ⊢ ( ∅  ∈  ( 𝒫  𝐴  ∩  Fin )  ↔  ( ∅  ⊆  𝐴  ∧  ∅  ∈  Fin ) ) | 
						
							| 20 | 17 18 19 | mpbir2an | ⊢ ∅  ∈  ( 𝒫  𝐴  ∩  Fin ) | 
						
							| 21 | 20 1 | eleqtrri | ⊢ ∅  ∈  𝑆 | 
						
							| 22 |  | 0ss | ⊢ ∅  ⊆  𝑦 | 
						
							| 23 | 22 | rgenw | ⊢ ∀ 𝑦  ∈  𝑆 ∅  ⊆  𝑦 | 
						
							| 24 |  | rabid2 | ⊢ ( 𝑆  =  { 𝑦  ∈  𝑆  ∣  𝑧  ⊆  𝑦 }  ↔  ∀ 𝑦  ∈  𝑆 𝑧  ⊆  𝑦 ) | 
						
							| 25 |  | sseq1 | ⊢ ( 𝑧  =  ∅  →  ( 𝑧  ⊆  𝑦  ↔  ∅  ⊆  𝑦 ) ) | 
						
							| 26 | 25 | ralbidv | ⊢ ( 𝑧  =  ∅  →  ( ∀ 𝑦  ∈  𝑆 𝑧  ⊆  𝑦  ↔  ∀ 𝑦  ∈  𝑆 ∅  ⊆  𝑦 ) ) | 
						
							| 27 | 24 26 | bitrid | ⊢ ( 𝑧  =  ∅  →  ( 𝑆  =  { 𝑦  ∈  𝑆  ∣  𝑧  ⊆  𝑦 }  ↔  ∀ 𝑦  ∈  𝑆 ∅  ⊆  𝑦 ) ) | 
						
							| 28 | 27 | rspcev | ⊢ ( ( ∅  ∈  𝑆  ∧  ∀ 𝑦  ∈  𝑆 ∅  ⊆  𝑦 )  →  ∃ 𝑧  ∈  𝑆 𝑆  =  { 𝑦  ∈  𝑆  ∣  𝑧  ⊆  𝑦 } ) | 
						
							| 29 | 21 23 28 | mp2an | ⊢ ∃ 𝑧  ∈  𝑆 𝑆  =  { 𝑦  ∈  𝑆  ∣  𝑧  ⊆  𝑦 } | 
						
							| 30 | 2 | elrnmpt | ⊢ ( 𝑆  ∈  V  →  ( 𝑆  ∈  ran  𝐹  ↔  ∃ 𝑧  ∈  𝑆 𝑆  =  { 𝑦  ∈  𝑆  ∣  𝑧  ⊆  𝑦 } ) ) | 
						
							| 31 | 10 30 | syl | ⊢ ( 𝐴  ∈  V  →  ( 𝑆  ∈  ran  𝐹  ↔  ∃ 𝑧  ∈  𝑆 𝑆  =  { 𝑦  ∈  𝑆  ∣  𝑧  ⊆  𝑦 } ) ) | 
						
							| 32 | 29 31 | mpbiri | ⊢ ( 𝐴  ∈  V  →  𝑆  ∈  ran  𝐹 ) | 
						
							| 33 | 32 | ne0d | ⊢ ( 𝐴  ∈  V  →  ran  𝐹  ≠  ∅ ) | 
						
							| 34 |  | simpr | ⊢ ( ( 𝐴  ∈  V  ∧  𝑧  ∈  𝑆 )  →  𝑧  ∈  𝑆 ) | 
						
							| 35 |  | ssid | ⊢ 𝑧  ⊆  𝑧 | 
						
							| 36 |  | sseq2 | ⊢ ( 𝑦  =  𝑧  →  ( 𝑧  ⊆  𝑦  ↔  𝑧  ⊆  𝑧 ) ) | 
						
							| 37 | 36 | rspcev | ⊢ ( ( 𝑧  ∈  𝑆  ∧  𝑧  ⊆  𝑧 )  →  ∃ 𝑦  ∈  𝑆 𝑧  ⊆  𝑦 ) | 
						
							| 38 | 34 35 37 | sylancl | ⊢ ( ( 𝐴  ∈  V  ∧  𝑧  ∈  𝑆 )  →  ∃ 𝑦  ∈  𝑆 𝑧  ⊆  𝑦 ) | 
						
							| 39 |  | rabn0 | ⊢ ( { 𝑦  ∈  𝑆  ∣  𝑧  ⊆  𝑦 }  ≠  ∅  ↔  ∃ 𝑦  ∈  𝑆 𝑧  ⊆  𝑦 ) | 
						
							| 40 | 38 39 | sylibr | ⊢ ( ( 𝐴  ∈  V  ∧  𝑧  ∈  𝑆 )  →  { 𝑦  ∈  𝑆  ∣  𝑧  ⊆  𝑦 }  ≠  ∅ ) | 
						
							| 41 | 40 | necomd | ⊢ ( ( 𝐴  ∈  V  ∧  𝑧  ∈  𝑆 )  →  ∅  ≠  { 𝑦  ∈  𝑆  ∣  𝑧  ⊆  𝑦 } ) | 
						
							| 42 | 41 | neneqd | ⊢ ( ( 𝐴  ∈  V  ∧  𝑧  ∈  𝑆 )  →  ¬  ∅  =  { 𝑦  ∈  𝑆  ∣  𝑧  ⊆  𝑦 } ) | 
						
							| 43 | 42 | nrexdv | ⊢ ( 𝐴  ∈  V  →  ¬  ∃ 𝑧  ∈  𝑆 ∅  =  { 𝑦  ∈  𝑆  ∣  𝑧  ⊆  𝑦 } ) | 
						
							| 44 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 45 | 2 | elrnmpt | ⊢ ( ∅  ∈  V  →  ( ∅  ∈  ran  𝐹  ↔  ∃ 𝑧  ∈  𝑆 ∅  =  { 𝑦  ∈  𝑆  ∣  𝑧  ⊆  𝑦 } ) ) | 
						
							| 46 | 44 45 | ax-mp | ⊢ ( ∅  ∈  ran  𝐹  ↔  ∃ 𝑧  ∈  𝑆 ∅  =  { 𝑦  ∈  𝑆  ∣  𝑧  ⊆  𝑦 } ) | 
						
							| 47 | 43 46 | sylnibr | ⊢ ( 𝐴  ∈  V  →  ¬  ∅  ∈  ran  𝐹 ) | 
						
							| 48 |  | df-nel | ⊢ ( ∅  ∉  ran  𝐹  ↔  ¬  ∅  ∈  ran  𝐹 ) | 
						
							| 49 | 47 48 | sylibr | ⊢ ( 𝐴  ∈  V  →  ∅  ∉  ran  𝐹 ) | 
						
							| 50 |  | elfpw | ⊢ ( 𝑢  ∈  ( 𝒫  𝐴  ∩  Fin )  ↔  ( 𝑢  ⊆  𝐴  ∧  𝑢  ∈  Fin ) ) | 
						
							| 51 | 50 | simplbi | ⊢ ( 𝑢  ∈  ( 𝒫  𝐴  ∩  Fin )  →  𝑢  ⊆  𝐴 ) | 
						
							| 52 | 51 1 | eleq2s | ⊢ ( 𝑢  ∈  𝑆  →  𝑢  ⊆  𝐴 ) | 
						
							| 53 |  | elfpw | ⊢ ( 𝑣  ∈  ( 𝒫  𝐴  ∩  Fin )  ↔  ( 𝑣  ⊆  𝐴  ∧  𝑣  ∈  Fin ) ) | 
						
							| 54 | 53 | simplbi | ⊢ ( 𝑣  ∈  ( 𝒫  𝐴  ∩  Fin )  →  𝑣  ⊆  𝐴 ) | 
						
							| 55 | 54 1 | eleq2s | ⊢ ( 𝑣  ∈  𝑆  →  𝑣  ⊆  𝐴 ) | 
						
							| 56 | 52 55 | anim12i | ⊢ ( ( 𝑢  ∈  𝑆  ∧  𝑣  ∈  𝑆 )  →  ( 𝑢  ⊆  𝐴  ∧  𝑣  ⊆  𝐴 ) ) | 
						
							| 57 |  | unss | ⊢ ( ( 𝑢  ⊆  𝐴  ∧  𝑣  ⊆  𝐴 )  ↔  ( 𝑢  ∪  𝑣 )  ⊆  𝐴 ) | 
						
							| 58 | 56 57 | sylib | ⊢ ( ( 𝑢  ∈  𝑆  ∧  𝑣  ∈  𝑆 )  →  ( 𝑢  ∪  𝑣 )  ⊆  𝐴 ) | 
						
							| 59 |  | elinel2 | ⊢ ( 𝑢  ∈  ( 𝒫  𝐴  ∩  Fin )  →  𝑢  ∈  Fin ) | 
						
							| 60 | 59 1 | eleq2s | ⊢ ( 𝑢  ∈  𝑆  →  𝑢  ∈  Fin ) | 
						
							| 61 |  | elinel2 | ⊢ ( 𝑣  ∈  ( 𝒫  𝐴  ∩  Fin )  →  𝑣  ∈  Fin ) | 
						
							| 62 | 61 1 | eleq2s | ⊢ ( 𝑣  ∈  𝑆  →  𝑣  ∈  Fin ) | 
						
							| 63 |  | unfi | ⊢ ( ( 𝑢  ∈  Fin  ∧  𝑣  ∈  Fin )  →  ( 𝑢  ∪  𝑣 )  ∈  Fin ) | 
						
							| 64 | 60 62 63 | syl2an | ⊢ ( ( 𝑢  ∈  𝑆  ∧  𝑣  ∈  𝑆 )  →  ( 𝑢  ∪  𝑣 )  ∈  Fin ) | 
						
							| 65 |  | elfpw | ⊢ ( ( 𝑢  ∪  𝑣 )  ∈  ( 𝒫  𝐴  ∩  Fin )  ↔  ( ( 𝑢  ∪  𝑣 )  ⊆  𝐴  ∧  ( 𝑢  ∪  𝑣 )  ∈  Fin ) ) | 
						
							| 66 | 58 64 65 | sylanbrc | ⊢ ( ( 𝑢  ∈  𝑆  ∧  𝑣  ∈  𝑆 )  →  ( 𝑢  ∪  𝑣 )  ∈  ( 𝒫  𝐴  ∩  Fin ) ) | 
						
							| 67 | 66 | adantl | ⊢ ( ( 𝐴  ∈  V  ∧  ( 𝑢  ∈  𝑆  ∧  𝑣  ∈  𝑆 ) )  →  ( 𝑢  ∪  𝑣 )  ∈  ( 𝒫  𝐴  ∩  Fin ) ) | 
						
							| 68 | 67 1 | eleqtrrdi | ⊢ ( ( 𝐴  ∈  V  ∧  ( 𝑢  ∈  𝑆  ∧  𝑣  ∈  𝑆 ) )  →  ( 𝑢  ∪  𝑣 )  ∈  𝑆 ) | 
						
							| 69 |  | eqidd | ⊢ ( ( 𝐴  ∈  V  ∧  ( 𝑢  ∈  𝑆  ∧  𝑣  ∈  𝑆 ) )  →  { 𝑦  ∈  𝑆  ∣  ( 𝑢  ∪  𝑣 )  ⊆  𝑦 }  =  { 𝑦  ∈  𝑆  ∣  ( 𝑢  ∪  𝑣 )  ⊆  𝑦 } ) | 
						
							| 70 |  | sseq1 | ⊢ ( 𝑎  =  ( 𝑢  ∪  𝑣 )  →  ( 𝑎  ⊆  𝑦  ↔  ( 𝑢  ∪  𝑣 )  ⊆  𝑦 ) ) | 
						
							| 71 | 70 | rabbidv | ⊢ ( 𝑎  =  ( 𝑢  ∪  𝑣 )  →  { 𝑦  ∈  𝑆  ∣  𝑎  ⊆  𝑦 }  =  { 𝑦  ∈  𝑆  ∣  ( 𝑢  ∪  𝑣 )  ⊆  𝑦 } ) | 
						
							| 72 | 71 | rspceeqv | ⊢ ( ( ( 𝑢  ∪  𝑣 )  ∈  𝑆  ∧  { 𝑦  ∈  𝑆  ∣  ( 𝑢  ∪  𝑣 )  ⊆  𝑦 }  =  { 𝑦  ∈  𝑆  ∣  ( 𝑢  ∪  𝑣 )  ⊆  𝑦 } )  →  ∃ 𝑎  ∈  𝑆 { 𝑦  ∈  𝑆  ∣  ( 𝑢  ∪  𝑣 )  ⊆  𝑦 }  =  { 𝑦  ∈  𝑆  ∣  𝑎  ⊆  𝑦 } ) | 
						
							| 73 | 68 69 72 | syl2anc | ⊢ ( ( 𝐴  ∈  V  ∧  ( 𝑢  ∈  𝑆  ∧  𝑣  ∈  𝑆 ) )  →  ∃ 𝑎  ∈  𝑆 { 𝑦  ∈  𝑆  ∣  ( 𝑢  ∪  𝑣 )  ⊆  𝑦 }  =  { 𝑦  ∈  𝑆  ∣  𝑎  ⊆  𝑦 } ) | 
						
							| 74 | 10 | adantr | ⊢ ( ( 𝐴  ∈  V  ∧  ( 𝑢  ∈  𝑆  ∧  𝑣  ∈  𝑆 ) )  →  𝑆  ∈  V ) | 
						
							| 75 |  | rabexg | ⊢ ( 𝑆  ∈  V  →  { 𝑦  ∈  𝑆  ∣  ( 𝑢  ∪  𝑣 )  ⊆  𝑦 }  ∈  V ) | 
						
							| 76 | 74 75 | syl | ⊢ ( ( 𝐴  ∈  V  ∧  ( 𝑢  ∈  𝑆  ∧  𝑣  ∈  𝑆 ) )  →  { 𝑦  ∈  𝑆  ∣  ( 𝑢  ∪  𝑣 )  ⊆  𝑦 }  ∈  V ) | 
						
							| 77 |  | sseq1 | ⊢ ( 𝑧  =  𝑎  →  ( 𝑧  ⊆  𝑦  ↔  𝑎  ⊆  𝑦 ) ) | 
						
							| 78 | 77 | rabbidv | ⊢ ( 𝑧  =  𝑎  →  { 𝑦  ∈  𝑆  ∣  𝑧  ⊆  𝑦 }  =  { 𝑦  ∈  𝑆  ∣  𝑎  ⊆  𝑦 } ) | 
						
							| 79 | 78 | cbvmptv | ⊢ ( 𝑧  ∈  𝑆  ↦  { 𝑦  ∈  𝑆  ∣  𝑧  ⊆  𝑦 } )  =  ( 𝑎  ∈  𝑆  ↦  { 𝑦  ∈  𝑆  ∣  𝑎  ⊆  𝑦 } ) | 
						
							| 80 | 2 79 | eqtri | ⊢ 𝐹  =  ( 𝑎  ∈  𝑆  ↦  { 𝑦  ∈  𝑆  ∣  𝑎  ⊆  𝑦 } ) | 
						
							| 81 | 80 | elrnmpt | ⊢ ( { 𝑦  ∈  𝑆  ∣  ( 𝑢  ∪  𝑣 )  ⊆  𝑦 }  ∈  V  →  ( { 𝑦  ∈  𝑆  ∣  ( 𝑢  ∪  𝑣 )  ⊆  𝑦 }  ∈  ran  𝐹  ↔  ∃ 𝑎  ∈  𝑆 { 𝑦  ∈  𝑆  ∣  ( 𝑢  ∪  𝑣 )  ⊆  𝑦 }  =  { 𝑦  ∈  𝑆  ∣  𝑎  ⊆  𝑦 } ) ) | 
						
							| 82 | 76 81 | syl | ⊢ ( ( 𝐴  ∈  V  ∧  ( 𝑢  ∈  𝑆  ∧  𝑣  ∈  𝑆 ) )  →  ( { 𝑦  ∈  𝑆  ∣  ( 𝑢  ∪  𝑣 )  ⊆  𝑦 }  ∈  ran  𝐹  ↔  ∃ 𝑎  ∈  𝑆 { 𝑦  ∈  𝑆  ∣  ( 𝑢  ∪  𝑣 )  ⊆  𝑦 }  =  { 𝑦  ∈  𝑆  ∣  𝑎  ⊆  𝑦 } ) ) | 
						
							| 83 | 73 82 | mpbird | ⊢ ( ( 𝐴  ∈  V  ∧  ( 𝑢  ∈  𝑆  ∧  𝑣  ∈  𝑆 ) )  →  { 𝑦  ∈  𝑆  ∣  ( 𝑢  ∪  𝑣 )  ⊆  𝑦 }  ∈  ran  𝐹 ) | 
						
							| 84 |  | pwidg | ⊢ ( { 𝑦  ∈  𝑆  ∣  ( 𝑢  ∪  𝑣 )  ⊆  𝑦 }  ∈  V  →  { 𝑦  ∈  𝑆  ∣  ( 𝑢  ∪  𝑣 )  ⊆  𝑦 }  ∈  𝒫  { 𝑦  ∈  𝑆  ∣  ( 𝑢  ∪  𝑣 )  ⊆  𝑦 } ) | 
						
							| 85 | 76 84 | syl | ⊢ ( ( 𝐴  ∈  V  ∧  ( 𝑢  ∈  𝑆  ∧  𝑣  ∈  𝑆 ) )  →  { 𝑦  ∈  𝑆  ∣  ( 𝑢  ∪  𝑣 )  ⊆  𝑦 }  ∈  𝒫  { 𝑦  ∈  𝑆  ∣  ( 𝑢  ∪  𝑣 )  ⊆  𝑦 } ) | 
						
							| 86 |  | inelcm | ⊢ ( ( { 𝑦  ∈  𝑆  ∣  ( 𝑢  ∪  𝑣 )  ⊆  𝑦 }  ∈  ran  𝐹  ∧  { 𝑦  ∈  𝑆  ∣  ( 𝑢  ∪  𝑣 )  ⊆  𝑦 }  ∈  𝒫  { 𝑦  ∈  𝑆  ∣  ( 𝑢  ∪  𝑣 )  ⊆  𝑦 } )  →  ( ran  𝐹  ∩  𝒫  { 𝑦  ∈  𝑆  ∣  ( 𝑢  ∪  𝑣 )  ⊆  𝑦 } )  ≠  ∅ ) | 
						
							| 87 | 83 85 86 | syl2anc | ⊢ ( ( 𝐴  ∈  V  ∧  ( 𝑢  ∈  𝑆  ∧  𝑣  ∈  𝑆 ) )  →  ( ran  𝐹  ∩  𝒫  { 𝑦  ∈  𝑆  ∣  ( 𝑢  ∪  𝑣 )  ⊆  𝑦 } )  ≠  ∅ ) | 
						
							| 88 | 87 | ralrimivva | ⊢ ( 𝐴  ∈  V  →  ∀ 𝑢  ∈  𝑆 ∀ 𝑣  ∈  𝑆 ( ran  𝐹  ∩  𝒫  { 𝑦  ∈  𝑆  ∣  ( 𝑢  ∪  𝑣 )  ⊆  𝑦 } )  ≠  ∅ ) | 
						
							| 89 |  | rabexg | ⊢ ( 𝑆  ∈  V  →  { 𝑦  ∈  𝑆  ∣  𝑢  ⊆  𝑦 }  ∈  V ) | 
						
							| 90 | 10 89 | syl | ⊢ ( 𝐴  ∈  V  →  { 𝑦  ∈  𝑆  ∣  𝑢  ⊆  𝑦 }  ∈  V ) | 
						
							| 91 | 90 | ralrimivw | ⊢ ( 𝐴  ∈  V  →  ∀ 𝑢  ∈  𝑆 { 𝑦  ∈  𝑆  ∣  𝑢  ⊆  𝑦 }  ∈  V ) | 
						
							| 92 |  | sseq1 | ⊢ ( 𝑧  =  𝑢  →  ( 𝑧  ⊆  𝑦  ↔  𝑢  ⊆  𝑦 ) ) | 
						
							| 93 | 92 | rabbidv | ⊢ ( 𝑧  =  𝑢  →  { 𝑦  ∈  𝑆  ∣  𝑧  ⊆  𝑦 }  =  { 𝑦  ∈  𝑆  ∣  𝑢  ⊆  𝑦 } ) | 
						
							| 94 | 93 | cbvmptv | ⊢ ( 𝑧  ∈  𝑆  ↦  { 𝑦  ∈  𝑆  ∣  𝑧  ⊆  𝑦 } )  =  ( 𝑢  ∈  𝑆  ↦  { 𝑦  ∈  𝑆  ∣  𝑢  ⊆  𝑦 } ) | 
						
							| 95 | 2 94 | eqtri | ⊢ 𝐹  =  ( 𝑢  ∈  𝑆  ↦  { 𝑦  ∈  𝑆  ∣  𝑢  ⊆  𝑦 } ) | 
						
							| 96 |  | ineq1 | ⊢ ( 𝑎  =  { 𝑦  ∈  𝑆  ∣  𝑢  ⊆  𝑦 }  →  ( 𝑎  ∩  { 𝑦  ∈  𝑆  ∣  𝑣  ⊆  𝑦 } )  =  ( { 𝑦  ∈  𝑆  ∣  𝑢  ⊆  𝑦 }  ∩  { 𝑦  ∈  𝑆  ∣  𝑣  ⊆  𝑦 } ) ) | 
						
							| 97 |  | inrab | ⊢ ( { 𝑦  ∈  𝑆  ∣  𝑢  ⊆  𝑦 }  ∩  { 𝑦  ∈  𝑆  ∣  𝑣  ⊆  𝑦 } )  =  { 𝑦  ∈  𝑆  ∣  ( 𝑢  ⊆  𝑦  ∧  𝑣  ⊆  𝑦 ) } | 
						
							| 98 |  | unss | ⊢ ( ( 𝑢  ⊆  𝑦  ∧  𝑣  ⊆  𝑦 )  ↔  ( 𝑢  ∪  𝑣 )  ⊆  𝑦 ) | 
						
							| 99 | 98 | rabbii | ⊢ { 𝑦  ∈  𝑆  ∣  ( 𝑢  ⊆  𝑦  ∧  𝑣  ⊆  𝑦 ) }  =  { 𝑦  ∈  𝑆  ∣  ( 𝑢  ∪  𝑣 )  ⊆  𝑦 } | 
						
							| 100 | 97 99 | eqtri | ⊢ ( { 𝑦  ∈  𝑆  ∣  𝑢  ⊆  𝑦 }  ∩  { 𝑦  ∈  𝑆  ∣  𝑣  ⊆  𝑦 } )  =  { 𝑦  ∈  𝑆  ∣  ( 𝑢  ∪  𝑣 )  ⊆  𝑦 } | 
						
							| 101 | 96 100 | eqtrdi | ⊢ ( 𝑎  =  { 𝑦  ∈  𝑆  ∣  𝑢  ⊆  𝑦 }  →  ( 𝑎  ∩  { 𝑦  ∈  𝑆  ∣  𝑣  ⊆  𝑦 } )  =  { 𝑦  ∈  𝑆  ∣  ( 𝑢  ∪  𝑣 )  ⊆  𝑦 } ) | 
						
							| 102 | 101 | pweqd | ⊢ ( 𝑎  =  { 𝑦  ∈  𝑆  ∣  𝑢  ⊆  𝑦 }  →  𝒫  ( 𝑎  ∩  { 𝑦  ∈  𝑆  ∣  𝑣  ⊆  𝑦 } )  =  𝒫  { 𝑦  ∈  𝑆  ∣  ( 𝑢  ∪  𝑣 )  ⊆  𝑦 } ) | 
						
							| 103 | 102 | ineq2d | ⊢ ( 𝑎  =  { 𝑦  ∈  𝑆  ∣  𝑢  ⊆  𝑦 }  →  ( ran  𝐹  ∩  𝒫  ( 𝑎  ∩  { 𝑦  ∈  𝑆  ∣  𝑣  ⊆  𝑦 } ) )  =  ( ran  𝐹  ∩  𝒫  { 𝑦  ∈  𝑆  ∣  ( 𝑢  ∪  𝑣 )  ⊆  𝑦 } ) ) | 
						
							| 104 | 103 | neeq1d | ⊢ ( 𝑎  =  { 𝑦  ∈  𝑆  ∣  𝑢  ⊆  𝑦 }  →  ( ( ran  𝐹  ∩  𝒫  ( 𝑎  ∩  { 𝑦  ∈  𝑆  ∣  𝑣  ⊆  𝑦 } ) )  ≠  ∅  ↔  ( ran  𝐹  ∩  𝒫  { 𝑦  ∈  𝑆  ∣  ( 𝑢  ∪  𝑣 )  ⊆  𝑦 } )  ≠  ∅ ) ) | 
						
							| 105 | 104 | ralbidv | ⊢ ( 𝑎  =  { 𝑦  ∈  𝑆  ∣  𝑢  ⊆  𝑦 }  →  ( ∀ 𝑣  ∈  𝑆 ( ran  𝐹  ∩  𝒫  ( 𝑎  ∩  { 𝑦  ∈  𝑆  ∣  𝑣  ⊆  𝑦 } ) )  ≠  ∅  ↔  ∀ 𝑣  ∈  𝑆 ( ran  𝐹  ∩  𝒫  { 𝑦  ∈  𝑆  ∣  ( 𝑢  ∪  𝑣 )  ⊆  𝑦 } )  ≠  ∅ ) ) | 
						
							| 106 | 95 105 | ralrnmptw | ⊢ ( ∀ 𝑢  ∈  𝑆 { 𝑦  ∈  𝑆  ∣  𝑢  ⊆  𝑦 }  ∈  V  →  ( ∀ 𝑎  ∈  ran  𝐹 ∀ 𝑣  ∈  𝑆 ( ran  𝐹  ∩  𝒫  ( 𝑎  ∩  { 𝑦  ∈  𝑆  ∣  𝑣  ⊆  𝑦 } ) )  ≠  ∅  ↔  ∀ 𝑢  ∈  𝑆 ∀ 𝑣  ∈  𝑆 ( ran  𝐹  ∩  𝒫  { 𝑦  ∈  𝑆  ∣  ( 𝑢  ∪  𝑣 )  ⊆  𝑦 } )  ≠  ∅ ) ) | 
						
							| 107 | 91 106 | syl | ⊢ ( 𝐴  ∈  V  →  ( ∀ 𝑎  ∈  ran  𝐹 ∀ 𝑣  ∈  𝑆 ( ran  𝐹  ∩  𝒫  ( 𝑎  ∩  { 𝑦  ∈  𝑆  ∣  𝑣  ⊆  𝑦 } ) )  ≠  ∅  ↔  ∀ 𝑢  ∈  𝑆 ∀ 𝑣  ∈  𝑆 ( ran  𝐹  ∩  𝒫  { 𝑦  ∈  𝑆  ∣  ( 𝑢  ∪  𝑣 )  ⊆  𝑦 } )  ≠  ∅ ) ) | 
						
							| 108 | 88 107 | mpbird | ⊢ ( 𝐴  ∈  V  →  ∀ 𝑎  ∈  ran  𝐹 ∀ 𝑣  ∈  𝑆 ( ran  𝐹  ∩  𝒫  ( 𝑎  ∩  { 𝑦  ∈  𝑆  ∣  𝑣  ⊆  𝑦 } ) )  ≠  ∅ ) | 
						
							| 109 |  | rabexg | ⊢ ( 𝑆  ∈  V  →  { 𝑦  ∈  𝑆  ∣  𝑣  ⊆  𝑦 }  ∈  V ) | 
						
							| 110 | 10 109 | syl | ⊢ ( 𝐴  ∈  V  →  { 𝑦  ∈  𝑆  ∣  𝑣  ⊆  𝑦 }  ∈  V ) | 
						
							| 111 | 110 | ralrimivw | ⊢ ( 𝐴  ∈  V  →  ∀ 𝑣  ∈  𝑆 { 𝑦  ∈  𝑆  ∣  𝑣  ⊆  𝑦 }  ∈  V ) | 
						
							| 112 |  | sseq1 | ⊢ ( 𝑧  =  𝑣  →  ( 𝑧  ⊆  𝑦  ↔  𝑣  ⊆  𝑦 ) ) | 
						
							| 113 | 112 | rabbidv | ⊢ ( 𝑧  =  𝑣  →  { 𝑦  ∈  𝑆  ∣  𝑧  ⊆  𝑦 }  =  { 𝑦  ∈  𝑆  ∣  𝑣  ⊆  𝑦 } ) | 
						
							| 114 | 113 | cbvmptv | ⊢ ( 𝑧  ∈  𝑆  ↦  { 𝑦  ∈  𝑆  ∣  𝑧  ⊆  𝑦 } )  =  ( 𝑣  ∈  𝑆  ↦  { 𝑦  ∈  𝑆  ∣  𝑣  ⊆  𝑦 } ) | 
						
							| 115 | 2 114 | eqtri | ⊢ 𝐹  =  ( 𝑣  ∈  𝑆  ↦  { 𝑦  ∈  𝑆  ∣  𝑣  ⊆  𝑦 } ) | 
						
							| 116 |  | ineq2 | ⊢ ( 𝑏  =  { 𝑦  ∈  𝑆  ∣  𝑣  ⊆  𝑦 }  →  ( 𝑎  ∩  𝑏 )  =  ( 𝑎  ∩  { 𝑦  ∈  𝑆  ∣  𝑣  ⊆  𝑦 } ) ) | 
						
							| 117 | 116 | pweqd | ⊢ ( 𝑏  =  { 𝑦  ∈  𝑆  ∣  𝑣  ⊆  𝑦 }  →  𝒫  ( 𝑎  ∩  𝑏 )  =  𝒫  ( 𝑎  ∩  { 𝑦  ∈  𝑆  ∣  𝑣  ⊆  𝑦 } ) ) | 
						
							| 118 | 117 | ineq2d | ⊢ ( 𝑏  =  { 𝑦  ∈  𝑆  ∣  𝑣  ⊆  𝑦 }  →  ( ran  𝐹  ∩  𝒫  ( 𝑎  ∩  𝑏 ) )  =  ( ran  𝐹  ∩  𝒫  ( 𝑎  ∩  { 𝑦  ∈  𝑆  ∣  𝑣  ⊆  𝑦 } ) ) ) | 
						
							| 119 | 118 | neeq1d | ⊢ ( 𝑏  =  { 𝑦  ∈  𝑆  ∣  𝑣  ⊆  𝑦 }  →  ( ( ran  𝐹  ∩  𝒫  ( 𝑎  ∩  𝑏 ) )  ≠  ∅  ↔  ( ran  𝐹  ∩  𝒫  ( 𝑎  ∩  { 𝑦  ∈  𝑆  ∣  𝑣  ⊆  𝑦 } ) )  ≠  ∅ ) ) | 
						
							| 120 | 115 119 | ralrnmptw | ⊢ ( ∀ 𝑣  ∈  𝑆 { 𝑦  ∈  𝑆  ∣  𝑣  ⊆  𝑦 }  ∈  V  →  ( ∀ 𝑏  ∈  ran  𝐹 ( ran  𝐹  ∩  𝒫  ( 𝑎  ∩  𝑏 ) )  ≠  ∅  ↔  ∀ 𝑣  ∈  𝑆 ( ran  𝐹  ∩  𝒫  ( 𝑎  ∩  { 𝑦  ∈  𝑆  ∣  𝑣  ⊆  𝑦 } ) )  ≠  ∅ ) ) | 
						
							| 121 | 111 120 | syl | ⊢ ( 𝐴  ∈  V  →  ( ∀ 𝑏  ∈  ran  𝐹 ( ran  𝐹  ∩  𝒫  ( 𝑎  ∩  𝑏 ) )  ≠  ∅  ↔  ∀ 𝑣  ∈  𝑆 ( ran  𝐹  ∩  𝒫  ( 𝑎  ∩  { 𝑦  ∈  𝑆  ∣  𝑣  ⊆  𝑦 } ) )  ≠  ∅ ) ) | 
						
							| 122 | 121 | ralbidv | ⊢ ( 𝐴  ∈  V  →  ( ∀ 𝑎  ∈  ran  𝐹 ∀ 𝑏  ∈  ran  𝐹 ( ran  𝐹  ∩  𝒫  ( 𝑎  ∩  𝑏 ) )  ≠  ∅  ↔  ∀ 𝑎  ∈  ran  𝐹 ∀ 𝑣  ∈  𝑆 ( ran  𝐹  ∩  𝒫  ( 𝑎  ∩  { 𝑦  ∈  𝑆  ∣  𝑣  ⊆  𝑦 } ) )  ≠  ∅ ) ) | 
						
							| 123 | 108 122 | mpbird | ⊢ ( 𝐴  ∈  V  →  ∀ 𝑎  ∈  ran  𝐹 ∀ 𝑏  ∈  ran  𝐹 ( ran  𝐹  ∩  𝒫  ( 𝑎  ∩  𝑏 ) )  ≠  ∅ ) | 
						
							| 124 | 33 49 123 | 3jca | ⊢ ( 𝐴  ∈  V  →  ( ran  𝐹  ≠  ∅  ∧  ∅  ∉  ran  𝐹  ∧  ∀ 𝑎  ∈  ran  𝐹 ∀ 𝑏  ∈  ran  𝐹 ( ran  𝐹  ∩  𝒫  ( 𝑎  ∩  𝑏 ) )  ≠  ∅ ) ) | 
						
							| 125 |  | isfbas | ⊢ ( 𝑆  ∈  V  →  ( ran  𝐹  ∈  ( fBas ‘ 𝑆 )  ↔  ( ran  𝐹  ⊆  𝒫  𝑆  ∧  ( ran  𝐹  ≠  ∅  ∧  ∅  ∉  ran  𝐹  ∧  ∀ 𝑎  ∈  ran  𝐹 ∀ 𝑏  ∈  ran  𝐹 ( ran  𝐹  ∩  𝒫  ( 𝑎  ∩  𝑏 ) )  ≠  ∅ ) ) ) ) | 
						
							| 126 | 10 125 | syl | ⊢ ( 𝐴  ∈  V  →  ( ran  𝐹  ∈  ( fBas ‘ 𝑆 )  ↔  ( ran  𝐹  ⊆  𝒫  𝑆  ∧  ( ran  𝐹  ≠  ∅  ∧  ∅  ∉  ran  𝐹  ∧  ∀ 𝑎  ∈  ran  𝐹 ∀ 𝑏  ∈  ran  𝐹 ( ran  𝐹  ∩  𝒫  ( 𝑎  ∩  𝑏 ) )  ≠  ∅ ) ) ) ) | 
						
							| 127 | 16 124 126 | mpbir2and | ⊢ ( 𝐴  ∈  V  →  ran  𝐹  ∈  ( fBas ‘ 𝑆 ) ) | 
						
							| 128 | 3 127 | eqeltrid | ⊢ ( 𝐴  ∈  V  →  𝐿  ∈  ( fBas ‘ 𝑆 ) ) | 
						
							| 129 | 4 5 128 | 3syl | ⊢ ( 𝜑  →  𝐿  ∈  ( fBas ‘ 𝑆 ) ) |