Step |
Hyp |
Ref |
Expression |
1 |
|
tsmsid.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
tsmsid.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
tsmsid.1 |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
4 |
|
tsmsid.2 |
⊢ ( 𝜑 → 𝐺 ∈ TopSp ) |
5 |
|
tsmsid.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
6 |
|
tsmsid.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
7 |
|
tsmsid.w |
⊢ ( 𝜑 → 𝐹 finSupp 0 ) |
8 |
|
tsmsgsum.j |
⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) |
9 |
1 8
|
istps |
⊢ ( 𝐺 ∈ TopSp ↔ 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
10 |
4 9
|
sylib |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
11 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → 𝐵 = ∪ 𝐽 ) |
12 |
10 11
|
syl |
⊢ ( 𝜑 → 𝐵 = ∪ 𝐽 ) |
13 |
12
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ ∪ 𝐽 ) ) |
14 |
|
elfpw |
⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ∈ Fin ) ) |
15 |
14
|
simplbi |
⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑦 ⊆ 𝐴 ) |
16 |
15
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑦 ⊆ 𝐴 ) |
17 |
|
suppssdm |
⊢ ( 𝐹 supp 0 ) ⊆ dom 𝐹 |
18 |
17 6
|
fssdm |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ 𝐴 ) |
19 |
18
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 supp 0 ) ⊆ 𝐴 ) |
20 |
16 19
|
unssd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝑦 ∪ ( 𝐹 supp 0 ) ) ⊆ 𝐴 ) |
21 |
|
elinel2 |
⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑦 ∈ Fin ) |
22 |
21
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑦 ∈ Fin ) |
23 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝐹 finSupp 0 ) |
24 |
23
|
fsuppimpd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 supp 0 ) ∈ Fin ) |
25 |
|
unfi |
⊢ ( ( 𝑦 ∈ Fin ∧ ( 𝐹 supp 0 ) ∈ Fin ) → ( 𝑦 ∪ ( 𝐹 supp 0 ) ) ∈ Fin ) |
26 |
22 24 25
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝑦 ∪ ( 𝐹 supp 0 ) ) ∈ Fin ) |
27 |
|
elfpw |
⊢ ( ( 𝑦 ∪ ( 𝐹 supp 0 ) ) ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( ( 𝑦 ∪ ( 𝐹 supp 0 ) ) ⊆ 𝐴 ∧ ( 𝑦 ∪ ( 𝐹 supp 0 ) ) ∈ Fin ) ) |
28 |
20 26 27
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝑦 ∪ ( 𝐹 supp 0 ) ) ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
29 |
|
ssun1 |
⊢ 𝑦 ⊆ ( 𝑦 ∪ ( 𝐹 supp 0 ) ) |
30 |
|
id |
⊢ ( 𝑧 = ( 𝑦 ∪ ( 𝐹 supp 0 ) ) → 𝑧 = ( 𝑦 ∪ ( 𝐹 supp 0 ) ) ) |
31 |
29 30
|
sseqtrrid |
⊢ ( 𝑧 = ( 𝑦 ∪ ( 𝐹 supp 0 ) ) → 𝑦 ⊆ 𝑧 ) |
32 |
|
pm5.5 |
⊢ ( 𝑦 ⊆ 𝑧 → ( ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ↔ ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) |
33 |
31 32
|
syl |
⊢ ( 𝑧 = ( 𝑦 ∪ ( 𝐹 supp 0 ) ) → ( ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ↔ ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) |
34 |
|
reseq2 |
⊢ ( 𝑧 = ( 𝑦 ∪ ( 𝐹 supp 0 ) ) → ( 𝐹 ↾ 𝑧 ) = ( 𝐹 ↾ ( 𝑦 ∪ ( 𝐹 supp 0 ) ) ) ) |
35 |
34
|
oveq2d |
⊢ ( 𝑧 = ( 𝑦 ∪ ( 𝐹 supp 0 ) ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝑦 ∪ ( 𝐹 supp 0 ) ) ) ) ) |
36 |
35
|
eleq1d |
⊢ ( 𝑧 = ( 𝑦 ∪ ( 𝐹 supp 0 ) ) → ( ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ↔ ( 𝐺 Σg ( 𝐹 ↾ ( 𝑦 ∪ ( 𝐹 supp 0 ) ) ) ) ∈ 𝑢 ) ) |
37 |
33 36
|
bitrd |
⊢ ( 𝑧 = ( 𝑦 ∪ ( 𝐹 supp 0 ) ) → ( ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ↔ ( 𝐺 Σg ( 𝐹 ↾ ( 𝑦 ∪ ( 𝐹 supp 0 ) ) ) ) ∈ 𝑢 ) ) |
38 |
37
|
rspcv |
⊢ ( ( 𝑦 ∪ ( 𝐹 supp 0 ) ) ∈ ( 𝒫 𝐴 ∩ Fin ) → ( ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝑦 ∪ ( 𝐹 supp 0 ) ) ) ) ∈ 𝑢 ) ) |
39 |
28 38
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝑦 ∪ ( 𝐹 supp 0 ) ) ) ) ∈ 𝑢 ) ) |
40 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝐺 ∈ CMnd ) |
41 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝐴 ∈ 𝑉 ) |
42 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
43 |
|
ssun2 |
⊢ ( 𝐹 supp 0 ) ⊆ ( 𝑦 ∪ ( 𝐹 supp 0 ) ) |
44 |
43
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 supp 0 ) ⊆ ( 𝑦 ∪ ( 𝐹 supp 0 ) ) ) |
45 |
1 2 40 41 42 44 23
|
gsumres |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝑦 ∪ ( 𝐹 supp 0 ) ) ) ) = ( 𝐺 Σg 𝐹 ) ) |
46 |
45
|
eleq1d |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝑦 ∪ ( 𝐹 supp 0 ) ) ) ) ∈ 𝑢 ↔ ( 𝐺 Σg 𝐹 ) ∈ 𝑢 ) ) |
47 |
39 46
|
sylibd |
⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) → ( 𝐺 Σg 𝐹 ) ∈ 𝑢 ) ) |
48 |
47
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) → ( ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) → ( 𝐺 Σg 𝐹 ) ∈ 𝑢 ) ) |
49 |
7
|
fsuppimpd |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ∈ Fin ) |
50 |
|
elfpw |
⊢ ( ( 𝐹 supp 0 ) ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( ( 𝐹 supp 0 ) ⊆ 𝐴 ∧ ( 𝐹 supp 0 ) ∈ Fin ) ) |
51 |
18 49 50
|
sylanbrc |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
52 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐽 ∧ ( 𝐺 Σg 𝐹 ) ∈ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( 𝐹 supp 0 ) ⊆ 𝑧 ) ) → 𝐺 ∈ CMnd ) |
53 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐽 ∧ ( 𝐺 Σg 𝐹 ) ∈ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( 𝐹 supp 0 ) ⊆ 𝑧 ) ) → 𝐴 ∈ 𝑉 ) |
54 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐽 ∧ ( 𝐺 Σg 𝐹 ) ∈ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( 𝐹 supp 0 ) ⊆ 𝑧 ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
55 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐽 ∧ ( 𝐺 Σg 𝐹 ) ∈ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( 𝐹 supp 0 ) ⊆ 𝑧 ) ) → ( 𝐹 supp 0 ) ⊆ 𝑧 ) |
56 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐽 ∧ ( 𝐺 Σg 𝐹 ) ∈ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( 𝐹 supp 0 ) ⊆ 𝑧 ) ) → 𝐹 finSupp 0 ) |
57 |
1 2 52 53 54 55 56
|
gsumres |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐽 ∧ ( 𝐺 Σg 𝐹 ) ∈ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( 𝐹 supp 0 ) ⊆ 𝑧 ) ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) = ( 𝐺 Σg 𝐹 ) ) |
58 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐽 ∧ ( 𝐺 Σg 𝐹 ) ∈ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( 𝐹 supp 0 ) ⊆ 𝑧 ) ) → ( 𝐺 Σg 𝐹 ) ∈ 𝑢 ) |
59 |
57 58
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐽 ∧ ( 𝐺 Σg 𝐹 ) ∈ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( 𝐹 supp 0 ) ⊆ 𝑧 ) ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) |
60 |
59
|
expr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐽 ∧ ( 𝐺 Σg 𝐹 ) ∈ 𝑢 ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( 𝐹 supp 0 ) ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) |
61 |
60
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐽 ∧ ( 𝐺 Σg 𝐹 ) ∈ 𝑢 ) ) → ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( ( 𝐹 supp 0 ) ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) |
62 |
|
sseq1 |
⊢ ( 𝑦 = ( 𝐹 supp 0 ) → ( 𝑦 ⊆ 𝑧 ↔ ( 𝐹 supp 0 ) ⊆ 𝑧 ) ) |
63 |
62
|
rspceaimv |
⊢ ( ( ( 𝐹 supp 0 ) ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( ( 𝐹 supp 0 ) ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) |
64 |
51 61 63
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐽 ∧ ( 𝐺 Σg 𝐹 ) ∈ 𝑢 ) ) → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) |
65 |
64
|
expr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) → ( ( 𝐺 Σg 𝐹 ) ∈ 𝑢 → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) |
66 |
48 65
|
impbid |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) → ( ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ↔ ( 𝐺 Σg 𝐹 ) ∈ 𝑢 ) ) |
67 |
|
disjsn |
⊢ ( ( 𝑢 ∩ { ( 𝐺 Σg 𝐹 ) } ) = ∅ ↔ ¬ ( 𝐺 Σg 𝐹 ) ∈ 𝑢 ) |
68 |
67
|
necon2abii |
⊢ ( ( 𝐺 Σg 𝐹 ) ∈ 𝑢 ↔ ( 𝑢 ∩ { ( 𝐺 Σg 𝐹 ) } ) ≠ ∅ ) |
69 |
66 68
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) → ( ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ↔ ( 𝑢 ∩ { ( 𝐺 Σg 𝐹 ) } ) ≠ ∅ ) ) |
70 |
69
|
imbi2d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) → ( ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ↔ ( 𝑥 ∈ 𝑢 → ( 𝑢 ∩ { ( 𝐺 Σg 𝐹 ) } ) ≠ ∅ ) ) ) |
71 |
70
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ↔ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ( 𝑢 ∩ { ( 𝐺 Σg 𝐹 ) } ) ≠ ∅ ) ) ) |
72 |
13 71
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) ↔ ( 𝑥 ∈ ∪ 𝐽 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ( 𝑢 ∩ { ( 𝐺 Σg 𝐹 ) } ) ≠ ∅ ) ) ) ) |
73 |
|
eqid |
⊢ ( 𝒫 𝐴 ∩ Fin ) = ( 𝒫 𝐴 ∩ Fin ) |
74 |
1 8 73 3 4 5 6
|
eltsms |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) ) ) |
75 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → 𝐽 ∈ Top ) |
76 |
10 75
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
77 |
1 2 3 5 6 7
|
gsumcl |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ 𝐵 ) |
78 |
77
|
snssd |
⊢ ( 𝜑 → { ( 𝐺 Σg 𝐹 ) } ⊆ 𝐵 ) |
79 |
78 12
|
sseqtrd |
⊢ ( 𝜑 → { ( 𝐺 Σg 𝐹 ) } ⊆ ∪ 𝐽 ) |
80 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
81 |
80
|
elcls2 |
⊢ ( ( 𝐽 ∈ Top ∧ { ( 𝐺 Σg 𝐹 ) } ⊆ ∪ 𝐽 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { ( 𝐺 Σg 𝐹 ) } ) ↔ ( 𝑥 ∈ ∪ 𝐽 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ( 𝑢 ∩ { ( 𝐺 Σg 𝐹 ) } ) ≠ ∅ ) ) ) ) |
82 |
76 79 81
|
syl2anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { ( 𝐺 Σg 𝐹 ) } ) ↔ ( 𝑥 ∈ ∪ 𝐽 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ( 𝑢 ∩ { ( 𝐺 Σg 𝐹 ) } ) ≠ ∅ ) ) ) ) |
83 |
72 74 82
|
3bitr4d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ↔ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { ( 𝐺 Σg 𝐹 ) } ) ) ) |
84 |
83
|
eqrdv |
⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) = ( ( cls ‘ 𝐽 ) ‘ { ( 𝐺 Σg 𝐹 ) } ) ) |