Step |
Hyp |
Ref |
Expression |
1 |
|
eltsms.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
eltsms.j |
⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) |
3 |
|
eltsms.s |
⊢ 𝑆 = ( 𝒫 𝐴 ∩ Fin ) |
4 |
|
eltsms.1 |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
5 |
|
eltsms.2 |
⊢ ( 𝜑 → 𝐺 ∈ TopSp ) |
6 |
|
eltsms.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
7 |
|
eltsms.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
8 |
|
tsmsi.3 |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐺 tsums 𝐹 ) ) |
9 |
|
tsmsi.4 |
⊢ ( 𝜑 → 𝑈 ∈ 𝐽 ) |
10 |
|
tsmsi.5 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑈 ) |
11 |
|
eleq2 |
⊢ ( 𝑢 = 𝑈 → ( 𝐶 ∈ 𝑢 ↔ 𝐶 ∈ 𝑈 ) ) |
12 |
|
eleq2 |
⊢ ( 𝑢 = 𝑈 → ( ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ↔ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑈 ) ) |
13 |
12
|
imbi2d |
⊢ ( 𝑢 = 𝑈 → ( ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ↔ ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑈 ) ) ) |
14 |
13
|
rexralbidv |
⊢ ( 𝑢 = 𝑈 → ( ∃ 𝑧 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ↔ ∃ 𝑧 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑈 ) ) ) |
15 |
11 14
|
imbi12d |
⊢ ( 𝑢 = 𝑈 → ( ( 𝐶 ∈ 𝑢 → ∃ 𝑧 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) ↔ ( 𝐶 ∈ 𝑈 → ∃ 𝑧 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑈 ) ) ) ) |
16 |
1 2 3 4 5 6 7
|
eltsms |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐺 tsums 𝐹 ) ↔ ( 𝐶 ∈ 𝐵 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝐶 ∈ 𝑢 → ∃ 𝑧 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) ) ) ) |
17 |
8 16
|
mpbid |
⊢ ( 𝜑 → ( 𝐶 ∈ 𝐵 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝐶 ∈ 𝑢 → ∃ 𝑧 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) ) ) |
18 |
17
|
simprd |
⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝐽 ( 𝐶 ∈ 𝑢 → ∃ 𝑧 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) ) |
19 |
15 18 9
|
rspcdva |
⊢ ( 𝜑 → ( 𝐶 ∈ 𝑈 → ∃ 𝑧 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑈 ) ) ) |
20 |
10 19
|
mpd |
⊢ ( 𝜑 → ∃ 𝑧 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑈 ) ) |