Metamath Proof Explorer


Theorem tsmsi

Description: The property of being a sum of the sequence F in the topological commutative monoid G . (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses eltsms.b 𝐵 = ( Base ‘ 𝐺 )
eltsms.j 𝐽 = ( TopOpen ‘ 𝐺 )
eltsms.s 𝑆 = ( 𝒫 𝐴 ∩ Fin )
eltsms.1 ( 𝜑𝐺 ∈ CMnd )
eltsms.2 ( 𝜑𝐺 ∈ TopSp )
eltsms.a ( 𝜑𝐴𝑉 )
eltsms.f ( 𝜑𝐹 : 𝐴𝐵 )
tsmsi.3 ( 𝜑𝐶 ∈ ( 𝐺 tsums 𝐹 ) )
tsmsi.4 ( 𝜑𝑈𝐽 )
tsmsi.5 ( 𝜑𝐶𝑈 )
Assertion tsmsi ( 𝜑 → ∃ 𝑧𝑆𝑦𝑆 ( 𝑧𝑦 → ( 𝐺 Σg ( 𝐹𝑦 ) ) ∈ 𝑈 ) )

Proof

Step Hyp Ref Expression
1 eltsms.b 𝐵 = ( Base ‘ 𝐺 )
2 eltsms.j 𝐽 = ( TopOpen ‘ 𝐺 )
3 eltsms.s 𝑆 = ( 𝒫 𝐴 ∩ Fin )
4 eltsms.1 ( 𝜑𝐺 ∈ CMnd )
5 eltsms.2 ( 𝜑𝐺 ∈ TopSp )
6 eltsms.a ( 𝜑𝐴𝑉 )
7 eltsms.f ( 𝜑𝐹 : 𝐴𝐵 )
8 tsmsi.3 ( 𝜑𝐶 ∈ ( 𝐺 tsums 𝐹 ) )
9 tsmsi.4 ( 𝜑𝑈𝐽 )
10 tsmsi.5 ( 𝜑𝐶𝑈 )
11 eleq2 ( 𝑢 = 𝑈 → ( 𝐶𝑢𝐶𝑈 ) )
12 eleq2 ( 𝑢 = 𝑈 → ( ( 𝐺 Σg ( 𝐹𝑦 ) ) ∈ 𝑢 ↔ ( 𝐺 Σg ( 𝐹𝑦 ) ) ∈ 𝑈 ) )
13 12 imbi2d ( 𝑢 = 𝑈 → ( ( 𝑧𝑦 → ( 𝐺 Σg ( 𝐹𝑦 ) ) ∈ 𝑢 ) ↔ ( 𝑧𝑦 → ( 𝐺 Σg ( 𝐹𝑦 ) ) ∈ 𝑈 ) ) )
14 13 rexralbidv ( 𝑢 = 𝑈 → ( ∃ 𝑧𝑆𝑦𝑆 ( 𝑧𝑦 → ( 𝐺 Σg ( 𝐹𝑦 ) ) ∈ 𝑢 ) ↔ ∃ 𝑧𝑆𝑦𝑆 ( 𝑧𝑦 → ( 𝐺 Σg ( 𝐹𝑦 ) ) ∈ 𝑈 ) ) )
15 11 14 imbi12d ( 𝑢 = 𝑈 → ( ( 𝐶𝑢 → ∃ 𝑧𝑆𝑦𝑆 ( 𝑧𝑦 → ( 𝐺 Σg ( 𝐹𝑦 ) ) ∈ 𝑢 ) ) ↔ ( 𝐶𝑈 → ∃ 𝑧𝑆𝑦𝑆 ( 𝑧𝑦 → ( 𝐺 Σg ( 𝐹𝑦 ) ) ∈ 𝑈 ) ) ) )
16 1 2 3 4 5 6 7 eltsms ( 𝜑 → ( 𝐶 ∈ ( 𝐺 tsums 𝐹 ) ↔ ( 𝐶𝐵 ∧ ∀ 𝑢𝐽 ( 𝐶𝑢 → ∃ 𝑧𝑆𝑦𝑆 ( 𝑧𝑦 → ( 𝐺 Σg ( 𝐹𝑦 ) ) ∈ 𝑢 ) ) ) ) )
17 8 16 mpbid ( 𝜑 → ( 𝐶𝐵 ∧ ∀ 𝑢𝐽 ( 𝐶𝑢 → ∃ 𝑧𝑆𝑦𝑆 ( 𝑧𝑦 → ( 𝐺 Σg ( 𝐹𝑦 ) ) ∈ 𝑢 ) ) ) )
18 17 simprd ( 𝜑 → ∀ 𝑢𝐽 ( 𝐶𝑢 → ∃ 𝑧𝑆𝑦𝑆 ( 𝑧𝑦 → ( 𝐺 Σg ( 𝐹𝑦 ) ) ∈ 𝑢 ) ) )
19 15 18 9 rspcdva ( 𝜑 → ( 𝐶𝑈 → ∃ 𝑧𝑆𝑦𝑆 ( 𝑧𝑦 → ( 𝐺 Σg ( 𝐹𝑦 ) ) ∈ 𝑈 ) ) )
20 10 19 mpd ( 𝜑 → ∃ 𝑧𝑆𝑦𝑆 ( 𝑧𝑦 → ( 𝐺 Σg ( 𝐹𝑦 ) ) ∈ 𝑈 ) )