Step |
Hyp |
Ref |
Expression |
1 |
|
tsmsid.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
tsmsid.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
tsmsid.1 |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
4 |
|
tsmsid.2 |
⊢ ( 𝜑 → 𝐺 ∈ TopSp ) |
5 |
|
tsmsid.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
6 |
|
tsmsid.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
7 |
|
tsmsid.w |
⊢ ( 𝜑 → 𝐹 finSupp 0 ) |
8 |
|
eqid |
⊢ ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝐺 ) |
9 |
1 8
|
istps |
⊢ ( 𝐺 ∈ TopSp ↔ ( TopOpen ‘ 𝐺 ) ∈ ( TopOn ‘ 𝐵 ) ) |
10 |
4 9
|
sylib |
⊢ ( 𝜑 → ( TopOpen ‘ 𝐺 ) ∈ ( TopOn ‘ 𝐵 ) ) |
11 |
|
topontop |
⊢ ( ( TopOpen ‘ 𝐺 ) ∈ ( TopOn ‘ 𝐵 ) → ( TopOpen ‘ 𝐺 ) ∈ Top ) |
12 |
10 11
|
syl |
⊢ ( 𝜑 → ( TopOpen ‘ 𝐺 ) ∈ Top ) |
13 |
1 2 3 5 6 7
|
gsumcl |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ 𝐵 ) |
14 |
13
|
snssd |
⊢ ( 𝜑 → { ( 𝐺 Σg 𝐹 ) } ⊆ 𝐵 ) |
15 |
|
toponuni |
⊢ ( ( TopOpen ‘ 𝐺 ) ∈ ( TopOn ‘ 𝐵 ) → 𝐵 = ∪ ( TopOpen ‘ 𝐺 ) ) |
16 |
10 15
|
syl |
⊢ ( 𝜑 → 𝐵 = ∪ ( TopOpen ‘ 𝐺 ) ) |
17 |
14 16
|
sseqtrd |
⊢ ( 𝜑 → { ( 𝐺 Σg 𝐹 ) } ⊆ ∪ ( TopOpen ‘ 𝐺 ) ) |
18 |
|
eqid |
⊢ ∪ ( TopOpen ‘ 𝐺 ) = ∪ ( TopOpen ‘ 𝐺 ) |
19 |
18
|
sscls |
⊢ ( ( ( TopOpen ‘ 𝐺 ) ∈ Top ∧ { ( 𝐺 Σg 𝐹 ) } ⊆ ∪ ( TopOpen ‘ 𝐺 ) ) → { ( 𝐺 Σg 𝐹 ) } ⊆ ( ( cls ‘ ( TopOpen ‘ 𝐺 ) ) ‘ { ( 𝐺 Σg 𝐹 ) } ) ) |
20 |
12 17 19
|
syl2anc |
⊢ ( 𝜑 → { ( 𝐺 Σg 𝐹 ) } ⊆ ( ( cls ‘ ( TopOpen ‘ 𝐺 ) ) ‘ { ( 𝐺 Σg 𝐹 ) } ) ) |
21 |
|
ovex |
⊢ ( 𝐺 Σg 𝐹 ) ∈ V |
22 |
21
|
snss |
⊢ ( ( 𝐺 Σg 𝐹 ) ∈ ( ( cls ‘ ( TopOpen ‘ 𝐺 ) ) ‘ { ( 𝐺 Σg 𝐹 ) } ) ↔ { ( 𝐺 Σg 𝐹 ) } ⊆ ( ( cls ‘ ( TopOpen ‘ 𝐺 ) ) ‘ { ( 𝐺 Σg 𝐹 ) } ) ) |
23 |
20 22
|
sylibr |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ ( ( cls ‘ ( TopOpen ‘ 𝐺 ) ) ‘ { ( 𝐺 Σg 𝐹 ) } ) ) |
24 |
1 2 3 4 5 6 7 8
|
tsmsgsum |
⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) = ( ( cls ‘ ( TopOpen ‘ 𝐺 ) ) ‘ { ( 𝐺 Σg 𝐹 ) } ) ) |
25 |
23 24
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ ( 𝐺 tsums 𝐹 ) ) |