| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tsmslem1.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | tsmslem1.s | ⊢ 𝑆  =  ( 𝒫  𝐴  ∩  Fin ) | 
						
							| 3 |  | tsmslem1.1 | ⊢ ( 𝜑  →  𝐺  ∈  CMnd ) | 
						
							| 4 |  | tsmslem1.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑊 ) | 
						
							| 5 |  | tsmslem1.f | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 6 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 7 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑆 )  →  𝐺  ∈  CMnd ) | 
						
							| 8 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑆 )  →  𝑋  ∈  𝑆 ) | 
						
							| 9 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑆 )  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 10 | 8 2 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑆 )  →  𝑋  ∈  ( 𝒫  𝐴  ∩  Fin ) ) | 
						
							| 11 |  | elfpw | ⊢ ( 𝑋  ∈  ( 𝒫  𝐴  ∩  Fin )  ↔  ( 𝑋  ⊆  𝐴  ∧  𝑋  ∈  Fin ) ) | 
						
							| 12 | 11 | simplbi | ⊢ ( 𝑋  ∈  ( 𝒫  𝐴  ∩  Fin )  →  𝑋  ⊆  𝐴 ) | 
						
							| 13 | 10 12 | syl | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑆 )  →  𝑋  ⊆  𝐴 ) | 
						
							| 14 | 9 13 | fssresd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑆 )  →  ( 𝐹  ↾  𝑋 ) : 𝑋 ⟶ 𝐵 ) | 
						
							| 15 | 10 | elin2d | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑆 )  →  𝑋  ∈  Fin ) | 
						
							| 16 |  | fvexd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑆 )  →  ( 0g ‘ 𝐺 )  ∈  V ) | 
						
							| 17 | 14 15 16 | fdmfifsupp | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑆 )  →  ( 𝐹  ↾  𝑋 )  finSupp  ( 0g ‘ 𝐺 ) ) | 
						
							| 18 | 1 6 7 8 14 17 | gsumcl | ⊢ ( ( 𝜑  ∧  𝑋  ∈  𝑆 )  →  ( 𝐺  Σg  ( 𝐹  ↾  𝑋 ) )  ∈  𝐵 ) |