Metamath Proof Explorer


Theorem tsmspropd

Description: The group sum depends only on the base set, additive operation, and topology components. Note that for entirely unrestricted functions, there can be dependency on out-of-domain values of the operation, so this is somewhat weaker than mndpropd etc. (Contributed by Mario Carneiro, 18-Sep-2015)

Ref Expression
Hypotheses tsmspropd.f ( 𝜑𝐹𝑉 )
tsmspropd.g ( 𝜑𝐺𝑊 )
tsmspropd.h ( 𝜑𝐻𝑋 )
tsmspropd.b ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐻 ) )
tsmspropd.p ( 𝜑 → ( +g𝐺 ) = ( +g𝐻 ) )
tsmspropd.j ( 𝜑 → ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝐻 ) )
Assertion tsmspropd ( 𝜑 → ( 𝐺 tsums 𝐹 ) = ( 𝐻 tsums 𝐹 ) )

Proof

Step Hyp Ref Expression
1 tsmspropd.f ( 𝜑𝐹𝑉 )
2 tsmspropd.g ( 𝜑𝐺𝑊 )
3 tsmspropd.h ( 𝜑𝐻𝑋 )
4 tsmspropd.b ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐻 ) )
5 tsmspropd.p ( 𝜑 → ( +g𝐺 ) = ( +g𝐻 ) )
6 tsmspropd.j ( 𝜑 → ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝐻 ) )
7 6 oveq1d ( 𝜑 → ( ( TopOpen ‘ 𝐺 ) fLimf ( ( 𝒫 dom 𝐹 ∩ Fin ) filGen ran ( 𝑧 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ∣ 𝑧𝑦 } ) ) ) = ( ( TopOpen ‘ 𝐻 ) fLimf ( ( 𝒫 dom 𝐹 ∩ Fin ) filGen ran ( 𝑧 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ∣ 𝑧𝑦 } ) ) ) )
8 resexg ( 𝐹𝑉 → ( 𝐹𝑦 ) ∈ V )
9 1 8 syl ( 𝜑 → ( 𝐹𝑦 ) ∈ V )
10 9 2 3 4 5 gsumpropd ( 𝜑 → ( 𝐺 Σg ( 𝐹𝑦 ) ) = ( 𝐻 Σg ( 𝐹𝑦 ) ) )
11 10 mpteq2dv ( 𝜑 → ( 𝑦 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑦 ) ) ) = ( 𝑦 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ↦ ( 𝐻 Σg ( 𝐹𝑦 ) ) ) )
12 7 11 fveq12d ( 𝜑 → ( ( ( TopOpen ‘ 𝐺 ) fLimf ( ( 𝒫 dom 𝐹 ∩ Fin ) filGen ran ( 𝑧 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ∣ 𝑧𝑦 } ) ) ) ‘ ( 𝑦 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑦 ) ) ) ) = ( ( ( TopOpen ‘ 𝐻 ) fLimf ( ( 𝒫 dom 𝐹 ∩ Fin ) filGen ran ( 𝑧 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ∣ 𝑧𝑦 } ) ) ) ‘ ( 𝑦 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ↦ ( 𝐻 Σg ( 𝐹𝑦 ) ) ) ) )
13 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
14 eqid ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝐺 )
15 eqid ( 𝒫 dom 𝐹 ∩ Fin ) = ( 𝒫 dom 𝐹 ∩ Fin )
16 eqid ran ( 𝑧 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ∣ 𝑧𝑦 } ) = ran ( 𝑧 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ∣ 𝑧𝑦 } )
17 eqidd ( 𝜑 → dom 𝐹 = dom 𝐹 )
18 13 14 15 16 2 1 17 tsmsval2 ( 𝜑 → ( 𝐺 tsums 𝐹 ) = ( ( ( TopOpen ‘ 𝐺 ) fLimf ( ( 𝒫 dom 𝐹 ∩ Fin ) filGen ran ( 𝑧 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ∣ 𝑧𝑦 } ) ) ) ‘ ( 𝑦 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹𝑦 ) ) ) ) )
19 eqid ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 )
20 eqid ( TopOpen ‘ 𝐻 ) = ( TopOpen ‘ 𝐻 )
21 19 20 15 16 3 1 17 tsmsval2 ( 𝜑 → ( 𝐻 tsums 𝐹 ) = ( ( ( TopOpen ‘ 𝐻 ) fLimf ( ( 𝒫 dom 𝐹 ∩ Fin ) filGen ran ( 𝑧 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ∣ 𝑧𝑦 } ) ) ) ‘ ( 𝑦 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ↦ ( 𝐻 Σg ( 𝐹𝑦 ) ) ) ) )
22 12 18 21 3eqtr4d ( 𝜑 → ( 𝐺 tsums 𝐹 ) = ( 𝐻 tsums 𝐹 ) )