Step |
Hyp |
Ref |
Expression |
1 |
|
tsmsres.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
tsmsres.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
tsmsres.1 |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
4 |
|
tsmsres.2 |
⊢ ( 𝜑 → 𝐺 ∈ TopSp ) |
5 |
|
tsmsres.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
6 |
|
tsmsres.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
7 |
|
tsmsres.s |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ 𝑊 ) |
8 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝑊 ) ⊆ 𝐴 |
9 |
8
|
sspwi |
⊢ 𝒫 ( 𝐴 ∩ 𝑊 ) ⊆ 𝒫 𝐴 |
10 |
|
ssrin |
⊢ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ⊆ 𝒫 𝐴 → ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ⊆ ( 𝒫 𝐴 ∩ Fin ) ) |
11 |
9 10
|
ax-mp |
⊢ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ⊆ ( 𝒫 𝐴 ∩ Fin ) |
12 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) → 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) |
13 |
11 12
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) → 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
14 |
|
elfpw |
⊢ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ∈ Fin ) ) |
15 |
14
|
simplbi |
⊢ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑧 ⊆ 𝐴 ) |
16 |
15
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑧 ⊆ 𝐴 ) |
17 |
16
|
ssrind |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝑧 ∩ 𝑊 ) ⊆ ( 𝐴 ∩ 𝑊 ) ) |
18 |
|
elinel2 |
⊢ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑧 ∈ Fin ) |
19 |
18
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑧 ∈ Fin ) |
20 |
|
inss1 |
⊢ ( 𝑧 ∩ 𝑊 ) ⊆ 𝑧 |
21 |
|
ssfi |
⊢ ( ( 𝑧 ∈ Fin ∧ ( 𝑧 ∩ 𝑊 ) ⊆ 𝑧 ) → ( 𝑧 ∩ 𝑊 ) ∈ Fin ) |
22 |
19 20 21
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝑧 ∩ 𝑊 ) ∈ Fin ) |
23 |
|
elfpw |
⊢ ( ( 𝑧 ∩ 𝑊 ) ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ↔ ( ( 𝑧 ∩ 𝑊 ) ⊆ ( 𝐴 ∩ 𝑊 ) ∧ ( 𝑧 ∩ 𝑊 ) ∈ Fin ) ) |
24 |
17 22 23
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝑧 ∩ 𝑊 ) ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) |
25 |
|
sseq2 |
⊢ ( 𝑏 = ( 𝑧 ∩ 𝑊 ) → ( 𝑎 ⊆ 𝑏 ↔ 𝑎 ⊆ ( 𝑧 ∩ 𝑊 ) ) ) |
26 |
|
ssin |
⊢ ( ( 𝑎 ⊆ 𝑧 ∧ 𝑎 ⊆ 𝑊 ) ↔ 𝑎 ⊆ ( 𝑧 ∩ 𝑊 ) ) |
27 |
25 26
|
bitr4di |
⊢ ( 𝑏 = ( 𝑧 ∩ 𝑊 ) → ( 𝑎 ⊆ 𝑏 ↔ ( 𝑎 ⊆ 𝑧 ∧ 𝑎 ⊆ 𝑊 ) ) ) |
28 |
|
reseq2 |
⊢ ( 𝑏 = ( 𝑧 ∩ 𝑊 ) → ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) = ( ( 𝐹 ↾ 𝑊 ) ↾ ( 𝑧 ∩ 𝑊 ) ) ) |
29 |
|
inss2 |
⊢ ( 𝑧 ∩ 𝑊 ) ⊆ 𝑊 |
30 |
|
resabs1 |
⊢ ( ( 𝑧 ∩ 𝑊 ) ⊆ 𝑊 → ( ( 𝐹 ↾ 𝑊 ) ↾ ( 𝑧 ∩ 𝑊 ) ) = ( 𝐹 ↾ ( 𝑧 ∩ 𝑊 ) ) ) |
31 |
29 30
|
ax-mp |
⊢ ( ( 𝐹 ↾ 𝑊 ) ↾ ( 𝑧 ∩ 𝑊 ) ) = ( 𝐹 ↾ ( 𝑧 ∩ 𝑊 ) ) |
32 |
28 31
|
eqtrdi |
⊢ ( 𝑏 = ( 𝑧 ∩ 𝑊 ) → ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) = ( 𝐹 ↾ ( 𝑧 ∩ 𝑊 ) ) ) |
33 |
32
|
oveq2d |
⊢ ( 𝑏 = ( 𝑧 ∩ 𝑊 ) → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝑧 ∩ 𝑊 ) ) ) ) |
34 |
33
|
eleq1d |
⊢ ( 𝑏 = ( 𝑧 ∩ 𝑊 ) → ( ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ↔ ( 𝐺 Σg ( 𝐹 ↾ ( 𝑧 ∩ 𝑊 ) ) ) ∈ 𝑢 ) ) |
35 |
27 34
|
imbi12d |
⊢ ( 𝑏 = ( 𝑧 ∩ 𝑊 ) → ( ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ↔ ( ( 𝑎 ⊆ 𝑧 ∧ 𝑎 ⊆ 𝑊 ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝑧 ∩ 𝑊 ) ) ) ∈ 𝑢 ) ) ) |
36 |
35
|
rspcv |
⊢ ( ( 𝑧 ∩ 𝑊 ) ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) → ( ∀ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) → ( ( 𝑎 ⊆ 𝑧 ∧ 𝑎 ⊆ 𝑊 ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝑧 ∩ 𝑊 ) ) ) ∈ 𝑢 ) ) ) |
37 |
24 36
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ∀ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) → ( ( 𝑎 ⊆ 𝑧 ∧ 𝑎 ⊆ 𝑊 ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝑧 ∩ 𝑊 ) ) ) ∈ 𝑢 ) ) ) |
38 |
|
elfpw |
⊢ ( 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ↔ ( 𝑎 ⊆ ( 𝐴 ∩ 𝑊 ) ∧ 𝑎 ∈ Fin ) ) |
39 |
38
|
simplbi |
⊢ ( 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) → 𝑎 ⊆ ( 𝐴 ∩ 𝑊 ) ) |
40 |
39
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑎 ⊆ ( 𝐴 ∩ 𝑊 ) ) |
41 |
|
inss2 |
⊢ ( 𝐴 ∩ 𝑊 ) ⊆ 𝑊 |
42 |
40 41
|
sstrdi |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑎 ⊆ 𝑊 ) |
43 |
42
|
biantrud |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝑎 ⊆ 𝑧 ↔ ( 𝑎 ⊆ 𝑧 ∧ 𝑎 ⊆ 𝑊 ) ) ) |
44 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝐺 ∈ CMnd ) |
45 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
46 |
45 16
|
fssresd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 ↾ 𝑧 ) : 𝑧 ⟶ 𝐵 ) |
47 |
6 5
|
fexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
48 |
47
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝐹 ∈ V ) |
49 |
2
|
fvexi |
⊢ 0 ∈ V |
50 |
|
ressuppss |
⊢ ( ( 𝐹 ∈ V ∧ 0 ∈ V ) → ( ( 𝐹 ↾ 𝑧 ) supp 0 ) ⊆ ( 𝐹 supp 0 ) ) |
51 |
48 49 50
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( 𝐹 ↾ 𝑧 ) supp 0 ) ⊆ ( 𝐹 supp 0 ) ) |
52 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 supp 0 ) ⊆ 𝑊 ) |
53 |
51 52
|
sstrd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( 𝐹 ↾ 𝑧 ) supp 0 ) ⊆ 𝑊 ) |
54 |
49
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 0 ∈ V ) |
55 |
46 19 54
|
fdmfifsupp |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 ↾ 𝑧 ) finSupp 0 ) |
56 |
1 2 44 19 46 53 55
|
gsumres |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑧 ) ↾ 𝑊 ) ) = ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ) |
57 |
|
resres |
⊢ ( ( 𝐹 ↾ 𝑧 ) ↾ 𝑊 ) = ( 𝐹 ↾ ( 𝑧 ∩ 𝑊 ) ) |
58 |
57
|
oveq2i |
⊢ ( 𝐺 Σg ( ( 𝐹 ↾ 𝑧 ) ↾ 𝑊 ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝑧 ∩ 𝑊 ) ) ) |
59 |
56 58
|
eqtr3di |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝑧 ∩ 𝑊 ) ) ) ) |
60 |
59
|
eleq1d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ↔ ( 𝐺 Σg ( 𝐹 ↾ ( 𝑧 ∩ 𝑊 ) ) ) ∈ 𝑢 ) ) |
61 |
43 60
|
imbi12d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( 𝑎 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ↔ ( ( 𝑎 ⊆ 𝑧 ∧ 𝑎 ⊆ 𝑊 ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝑧 ∩ 𝑊 ) ) ) ∈ 𝑢 ) ) ) |
62 |
37 61
|
sylibrd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) ∧ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ∀ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) → ( 𝑎 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) |
63 |
62
|
ralrimdva |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) → ( ∀ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) → ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑎 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) |
64 |
|
sseq1 |
⊢ ( 𝑦 = 𝑎 → ( 𝑦 ⊆ 𝑧 ↔ 𝑎 ⊆ 𝑧 ) ) |
65 |
64
|
rspceaimv |
⊢ ( ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑎 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) |
66 |
13 63 65
|
syl6an |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) → ( ∀ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) |
67 |
66
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∀ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) |
68 |
|
elfpw |
⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ∈ Fin ) ) |
69 |
68
|
simplbi |
⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑦 ⊆ 𝐴 ) |
70 |
69
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑦 ⊆ 𝐴 ) |
71 |
70
|
ssrind |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝑦 ∩ 𝑊 ) ⊆ ( 𝐴 ∩ 𝑊 ) ) |
72 |
|
elinel2 |
⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑦 ∈ Fin ) |
73 |
72
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑦 ∈ Fin ) |
74 |
|
inss1 |
⊢ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑦 |
75 |
|
ssfi |
⊢ ( ( 𝑦 ∈ Fin ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑦 ) → ( 𝑦 ∩ 𝑊 ) ∈ Fin ) |
76 |
73 74 75
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝑦 ∩ 𝑊 ) ∈ Fin ) |
77 |
|
elfpw |
⊢ ( ( 𝑦 ∩ 𝑊 ) ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ↔ ( ( 𝑦 ∩ 𝑊 ) ⊆ ( 𝐴 ∩ 𝑊 ) ∧ ( 𝑦 ∩ 𝑊 ) ∈ Fin ) ) |
78 |
71 76 77
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝑦 ∩ 𝑊 ) ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) |
79 |
69
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) → 𝑦 ⊆ 𝐴 ) |
80 |
|
elfpw |
⊢ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ↔ ( 𝑏 ⊆ ( 𝐴 ∩ 𝑊 ) ∧ 𝑏 ∈ Fin ) ) |
81 |
80
|
simplbi |
⊢ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) → 𝑏 ⊆ ( 𝐴 ∩ 𝑊 ) ) |
82 |
81
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) → 𝑏 ⊆ ( 𝐴 ∩ 𝑊 ) ) |
83 |
82 8
|
sstrdi |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) → 𝑏 ⊆ 𝐴 ) |
84 |
79 83
|
unssd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) → ( 𝑦 ∪ 𝑏 ) ⊆ 𝐴 ) |
85 |
|
elinel2 |
⊢ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) → 𝑏 ∈ Fin ) |
86 |
|
unfi |
⊢ ( ( 𝑦 ∈ Fin ∧ 𝑏 ∈ Fin ) → ( 𝑦 ∪ 𝑏 ) ∈ Fin ) |
87 |
73 85 86
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) → ( 𝑦 ∪ 𝑏 ) ∈ Fin ) |
88 |
|
elfpw |
⊢ ( ( 𝑦 ∪ 𝑏 ) ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( ( 𝑦 ∪ 𝑏 ) ⊆ 𝐴 ∧ ( 𝑦 ∪ 𝑏 ) ∈ Fin ) ) |
89 |
84 87 88
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) → ( 𝑦 ∪ 𝑏 ) ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
90 |
|
ssun1 |
⊢ 𝑦 ⊆ ( 𝑦 ∪ 𝑏 ) |
91 |
|
id |
⊢ ( 𝑧 = ( 𝑦 ∪ 𝑏 ) → 𝑧 = ( 𝑦 ∪ 𝑏 ) ) |
92 |
90 91
|
sseqtrrid |
⊢ ( 𝑧 = ( 𝑦 ∪ 𝑏 ) → 𝑦 ⊆ 𝑧 ) |
93 |
|
pm5.5 |
⊢ ( 𝑦 ⊆ 𝑧 → ( ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ↔ ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) |
94 |
92 93
|
syl |
⊢ ( 𝑧 = ( 𝑦 ∪ 𝑏 ) → ( ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ↔ ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) |
95 |
|
reseq2 |
⊢ ( 𝑧 = ( 𝑦 ∪ 𝑏 ) → ( 𝐹 ↾ 𝑧 ) = ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) ) |
96 |
95
|
oveq2d |
⊢ ( 𝑧 = ( 𝑦 ∪ 𝑏 ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) ) ) |
97 |
96
|
eleq1d |
⊢ ( 𝑧 = ( 𝑦 ∪ 𝑏 ) → ( ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ↔ ( 𝐺 Σg ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) ) ∈ 𝑢 ) ) |
98 |
94 97
|
bitrd |
⊢ ( 𝑧 = ( 𝑦 ∪ 𝑏 ) → ( ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ↔ ( 𝐺 Σg ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) ) ∈ 𝑢 ) ) |
99 |
98
|
rspcv |
⊢ ( ( 𝑦 ∪ 𝑏 ) ∈ ( 𝒫 𝐴 ∩ Fin ) → ( ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) ) ∈ 𝑢 ) ) |
100 |
89 99
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) → ( ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) ) ∈ 𝑢 ) ) |
101 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → 𝐺 ∈ CMnd ) |
102 |
87
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( 𝑦 ∪ 𝑏 ) ∈ Fin ) |
103 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
104 |
84
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( 𝑦 ∪ 𝑏 ) ⊆ 𝐴 ) |
105 |
103 104
|
fssresd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) : ( 𝑦 ∪ 𝑏 ) ⟶ 𝐵 ) |
106 |
47 49
|
jctir |
⊢ ( 𝜑 → ( 𝐹 ∈ V ∧ 0 ∈ V ) ) |
107 |
106
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( 𝐹 ∈ V ∧ 0 ∈ V ) ) |
108 |
|
ressuppss |
⊢ ( ( 𝐹 ∈ V ∧ 0 ∈ V ) → ( ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) supp 0 ) ⊆ ( 𝐹 supp 0 ) ) |
109 |
107 108
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) supp 0 ) ⊆ ( 𝐹 supp 0 ) ) |
110 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( 𝐹 supp 0 ) ⊆ 𝑊 ) |
111 |
109 110
|
sstrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) supp 0 ) ⊆ 𝑊 ) |
112 |
49
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → 0 ∈ V ) |
113 |
105 102 112
|
fdmfifsupp |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) finSupp 0 ) |
114 |
1 2 101 102 105 111 113
|
gsumres |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( 𝐺 Σg ( ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) ↾ 𝑊 ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) ) ) |
115 |
|
resres |
⊢ ( ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) ↾ 𝑊 ) = ( 𝐹 ↾ ( ( 𝑦 ∪ 𝑏 ) ∩ 𝑊 ) ) |
116 |
|
indir |
⊢ ( ( 𝑦 ∪ 𝑏 ) ∩ 𝑊 ) = ( ( 𝑦 ∩ 𝑊 ) ∪ ( 𝑏 ∩ 𝑊 ) ) |
117 |
82 41
|
sstrdi |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) → 𝑏 ⊆ 𝑊 ) |
118 |
117
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → 𝑏 ⊆ 𝑊 ) |
119 |
|
df-ss |
⊢ ( 𝑏 ⊆ 𝑊 ↔ ( 𝑏 ∩ 𝑊 ) = 𝑏 ) |
120 |
118 119
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( 𝑏 ∩ 𝑊 ) = 𝑏 ) |
121 |
120
|
uneq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( ( 𝑦 ∩ 𝑊 ) ∪ ( 𝑏 ∩ 𝑊 ) ) = ( ( 𝑦 ∩ 𝑊 ) ∪ 𝑏 ) ) |
122 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) |
123 |
|
ssequn1 |
⊢ ( ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ↔ ( ( 𝑦 ∩ 𝑊 ) ∪ 𝑏 ) = 𝑏 ) |
124 |
122 123
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( ( 𝑦 ∩ 𝑊 ) ∪ 𝑏 ) = 𝑏 ) |
125 |
121 124
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( ( 𝑦 ∩ 𝑊 ) ∪ ( 𝑏 ∩ 𝑊 ) ) = 𝑏 ) |
126 |
116 125
|
syl5eq |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( ( 𝑦 ∪ 𝑏 ) ∩ 𝑊 ) = 𝑏 ) |
127 |
126
|
reseq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( 𝐹 ↾ ( ( 𝑦 ∪ 𝑏 ) ∩ 𝑊 ) ) = ( 𝐹 ↾ 𝑏 ) ) |
128 |
115 127
|
syl5eq |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) ↾ 𝑊 ) = ( 𝐹 ↾ 𝑏 ) ) |
129 |
118
|
resabs1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) = ( 𝐹 ↾ 𝑏 ) ) |
130 |
128 129
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) ↾ 𝑊 ) = ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) |
131 |
130
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( 𝐺 Σg ( ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) ↾ 𝑊 ) ) = ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ) |
132 |
114 131
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) ) = ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ) |
133 |
132
|
eleq1d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) ) ∈ 𝑢 ↔ ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) |
134 |
133
|
biimpd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) → ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) ) ∈ 𝑢 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) |
135 |
134
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) → ( ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 → ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) ) ∈ 𝑢 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) ) |
136 |
135
|
com23 |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) → ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝑦 ∪ 𝑏 ) ) ) ∈ 𝑢 → ( ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) ) |
137 |
100 136
|
syld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ) → ( ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) → ( ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) ) |
138 |
137
|
ralrimdva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) → ∀ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ( ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) ) |
139 |
|
sseq1 |
⊢ ( 𝑎 = ( 𝑦 ∩ 𝑊 ) → ( 𝑎 ⊆ 𝑏 ↔ ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 ) ) |
140 |
139
|
rspceaimv |
⊢ ( ( ( 𝑦 ∩ 𝑊 ) ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∧ ∀ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ( ( 𝑦 ∩ 𝑊 ) ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) → ∃ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∀ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) |
141 |
78 138 140
|
syl6an |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) → ∃ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∀ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) ) |
142 |
141
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) → ∃ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∀ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) ) |
143 |
67 142
|
impbid |
⊢ ( 𝜑 → ( ∃ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∀ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ↔ ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) |
144 |
143
|
imbi2d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑢 → ∃ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∀ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) ↔ ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) ) |
145 |
144
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑢 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑥 ∈ 𝑢 → ∃ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∀ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) ↔ ∀ 𝑢 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) ) |
146 |
145
|
anbi2d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑢 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑥 ∈ 𝑢 → ∃ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∀ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑢 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) ) ) |
147 |
|
eqid |
⊢ ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝐺 ) |
148 |
|
eqid |
⊢ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) = ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) |
149 |
|
inex1g |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∩ 𝑊 ) ∈ V ) |
150 |
5 149
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝑊 ) ∈ V ) |
151 |
|
fssres |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝐴 ∩ 𝑊 ) ⊆ 𝐴 ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝑊 ) ) : ( 𝐴 ∩ 𝑊 ) ⟶ 𝐵 ) |
152 |
6 8 151
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 ∩ 𝑊 ) ) : ( 𝐴 ∩ 𝑊 ) ⟶ 𝐵 ) |
153 |
|
resres |
⊢ ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑊 ) = ( 𝐹 ↾ ( 𝐴 ∩ 𝑊 ) ) |
154 |
|
ffn |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) |
155 |
|
fnresdm |
⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) |
156 |
6 154 155
|
3syl |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) |
157 |
156
|
reseq1d |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑊 ) = ( 𝐹 ↾ 𝑊 ) ) |
158 |
153 157
|
eqtr3id |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 ∩ 𝑊 ) ) = ( 𝐹 ↾ 𝑊 ) ) |
159 |
158
|
feq1d |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐴 ∩ 𝑊 ) ) : ( 𝐴 ∩ 𝑊 ) ⟶ 𝐵 ↔ ( 𝐹 ↾ 𝑊 ) : ( 𝐴 ∩ 𝑊 ) ⟶ 𝐵 ) ) |
160 |
152 159
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝑊 ) : ( 𝐴 ∩ 𝑊 ) ⟶ 𝐵 ) |
161 |
1 147 148 3 4 150 160
|
eltsms |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐺 tsums ( 𝐹 ↾ 𝑊 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑢 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑥 ∈ 𝑢 → ∃ 𝑎 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ∀ 𝑏 ∈ ( 𝒫 ( 𝐴 ∩ 𝑊 ) ∩ Fin ) ( 𝑎 ⊆ 𝑏 → ( 𝐺 Σg ( ( 𝐹 ↾ 𝑊 ) ↾ 𝑏 ) ) ∈ 𝑢 ) ) ) ) ) |
162 |
|
eqid |
⊢ ( 𝒫 𝐴 ∩ Fin ) = ( 𝒫 𝐴 ∩ Fin ) |
163 |
1 147 162 3 4 5 6
|
eltsms |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ∀ 𝑢 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ 𝑧 ) ) ∈ 𝑢 ) ) ) ) ) |
164 |
146 161 163
|
3bitr4d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐺 tsums ( 𝐹 ↾ 𝑊 ) ) ↔ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) ) |
165 |
164
|
eqrdv |
⊢ ( 𝜑 → ( 𝐺 tsums ( 𝐹 ↾ 𝑊 ) ) = ( 𝐺 tsums 𝐹 ) ) |