Step |
Hyp |
Ref |
Expression |
1 |
|
tsmssub.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
tsmssub.p |
⊢ − = ( -g ‘ 𝐺 ) |
3 |
|
tsmssub.1 |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
4 |
|
tsmssub.2 |
⊢ ( 𝜑 → 𝐺 ∈ TopGrp ) |
5 |
|
tsmssub.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
6 |
|
tsmssub.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
7 |
|
tsmssub.h |
⊢ ( 𝜑 → 𝐻 : 𝐴 ⟶ 𝐵 ) |
8 |
|
tsmssub.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) |
9 |
|
tsmssub.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝐺 tsums 𝐻 ) ) |
10 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
11 |
|
tgptmd |
⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd ) |
12 |
4 11
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ TopMnd ) |
13 |
|
tgpgrp |
⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) |
14 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
15 |
1 14
|
grpinvf |
⊢ ( 𝐺 ∈ Grp → ( invg ‘ 𝐺 ) : 𝐵 ⟶ 𝐵 ) |
16 |
4 13 15
|
3syl |
⊢ ( 𝜑 → ( invg ‘ 𝐺 ) : 𝐵 ⟶ 𝐵 ) |
17 |
|
fco |
⊢ ( ( ( invg ‘ 𝐺 ) : 𝐵 ⟶ 𝐵 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ) → ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) : 𝐴 ⟶ 𝐵 ) |
18 |
16 7 17
|
syl2anc |
⊢ ( 𝜑 → ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) : 𝐴 ⟶ 𝐵 ) |
19 |
1 14 3 4 5 7 9
|
tsmsinv |
⊢ ( 𝜑 → ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ∈ ( 𝐺 tsums ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ) |
20 |
1 10 3 12 5 6 18 8 19
|
tsmsadd |
⊢ ( 𝜑 → ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ∈ ( 𝐺 tsums ( 𝐹 ∘f ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ) ) |
21 |
|
tgptps |
⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ TopSp ) |
22 |
4 21
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ TopSp ) |
23 |
1 3 22 5 6
|
tsmscl |
⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) ⊆ 𝐵 ) |
24 |
23 8
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
25 |
1 3 22 5 7
|
tsmscl |
⊢ ( 𝜑 → ( 𝐺 tsums 𝐻 ) ⊆ 𝐵 ) |
26 |
25 9
|
sseldd |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
27 |
1 10 14 2
|
grpsubval |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
28 |
24 26 27
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
29 |
6
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) |
30 |
7
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑘 ) ∈ 𝐵 ) |
31 |
1 10 14 2
|
grpsubval |
⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ∧ ( 𝐻 ‘ 𝑘 ) ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑘 ) − ( 𝐻 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) |
32 |
29 30 31
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑘 ) − ( 𝐻 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) |
33 |
32
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐻 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
34 |
6
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
35 |
7
|
feqmptd |
⊢ ( 𝜑 → 𝐻 = ( 𝑘 ∈ 𝐴 ↦ ( 𝐻 ‘ 𝑘 ) ) ) |
36 |
5 29 30 34 35
|
offval2 |
⊢ ( 𝜑 → ( 𝐹 ∘f − 𝐻 ) = ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐻 ‘ 𝑘 ) ) ) ) |
37 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ∈ V ) |
38 |
16
|
feqmptd |
⊢ ( 𝜑 → ( invg ‘ 𝐺 ) = ( 𝑥 ∈ 𝐵 ↦ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
39 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝐻 ‘ 𝑘 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) |
40 |
30 35 38 39
|
fmptco |
⊢ ( 𝜑 → ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) = ( 𝑘 ∈ 𝐴 ↦ ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) |
41 |
5 29 37 34 40
|
offval2 |
⊢ ( 𝜑 → ( 𝐹 ∘f ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) = ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
42 |
33 36 41
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ∘f − 𝐻 ) = ( 𝐹 ∘f ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ) |
43 |
42
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 tsums ( 𝐹 ∘f − 𝐻 ) ) = ( 𝐺 tsums ( 𝐹 ∘f ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ) ) |
44 |
20 28 43
|
3eltr4d |
⊢ ( 𝜑 → ( 𝑋 − 𝑌 ) ∈ ( 𝐺 tsums ( 𝐹 ∘f − 𝐻 ) ) ) |