Step |
Hyp |
Ref |
Expression |
1 |
|
tsmssubm.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
tsmssubm.1 |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
3 |
|
tsmssubm.2 |
⊢ ( 𝜑 → 𝐺 ∈ TopSp ) |
4 |
|
tsmssubm.s |
⊢ ( 𝜑 → 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) |
5 |
|
tsmssubm.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) |
6 |
|
tsmssubm.h |
⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) |
7 |
6
|
submbas |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
8 |
4 7
|
syl |
⊢ ( 𝜑 → 𝑆 = ( Base ‘ 𝐻 ) ) |
9 |
8
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 ↔ 𝑥 ∈ ( Base ‘ 𝐻 ) ) ) |
10 |
9
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑆 ∧ ∀ 𝑣 ∈ ( TopOpen ‘ 𝐻 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑧 ⊆ 𝑦 → ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑣 ) ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ ∀ 𝑣 ∈ ( TopOpen ‘ 𝐻 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑧 ⊆ 𝑦 → ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑣 ) ) ) ) ) |
11 |
|
elin |
⊢ ( 𝑥 ∈ ( ( 𝐺 tsums 𝐹 ) ∩ 𝑆 ) ↔ ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ∧ 𝑥 ∈ 𝑆 ) ) |
12 |
11
|
biancomi |
⊢ ( 𝑥 ∈ ( ( 𝐺 tsums 𝐹 ) ∩ 𝑆 ) ↔ ( 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
14 |
13
|
submss |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
15 |
4 14
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
16 |
15
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
17 |
|
eqid |
⊢ ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝐺 ) |
18 |
|
eqid |
⊢ ( 𝒫 𝐴 ∩ Fin ) = ( 𝒫 𝐴 ∩ Fin ) |
19 |
5 15
|
fssd |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ( Base ‘ 𝐺 ) ) |
20 |
13 17 18 2 3 1 19
|
eltsms |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑢 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑥 ∈ 𝑢 → ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) ) ) ) |
21 |
20
|
baibd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ↔ ∀ 𝑢 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑥 ∈ 𝑢 → ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) ) ) |
22 |
16 21
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ↔ ∀ 𝑢 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑥 ∈ 𝑢 → ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) ) ) |
23 |
|
vex |
⊢ 𝑢 ∈ V |
24 |
23
|
inex1 |
⊢ ( 𝑢 ∩ 𝑆 ) ∈ V |
25 |
24
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑢 ∈ ( TopOpen ‘ 𝐺 ) ) → ( 𝑢 ∩ 𝑆 ) ∈ V ) |
26 |
6 17
|
resstopn |
⊢ ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) = ( TopOpen ‘ 𝐻 ) |
27 |
26
|
eleq2i |
⊢ ( 𝑣 ∈ ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ↔ 𝑣 ∈ ( TopOpen ‘ 𝐻 ) ) |
28 |
|
fvex |
⊢ ( TopOpen ‘ 𝐺 ) ∈ V |
29 |
|
elrest |
⊢ ( ( ( TopOpen ‘ 𝐺 ) ∈ V ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → ( 𝑣 ∈ ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ↔ ∃ 𝑢 ∈ ( TopOpen ‘ 𝐺 ) 𝑣 = ( 𝑢 ∩ 𝑆 ) ) ) |
30 |
28 4 29
|
sylancr |
⊢ ( 𝜑 → ( 𝑣 ∈ ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ↔ ∃ 𝑢 ∈ ( TopOpen ‘ 𝐺 ) 𝑣 = ( 𝑢 ∩ 𝑆 ) ) ) |
31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑣 ∈ ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ↔ ∃ 𝑢 ∈ ( TopOpen ‘ 𝐺 ) 𝑣 = ( 𝑢 ∩ 𝑆 ) ) ) |
32 |
27 31
|
bitr3id |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑣 ∈ ( TopOpen ‘ 𝐻 ) ↔ ∃ 𝑢 ∈ ( TopOpen ‘ 𝐺 ) 𝑣 = ( 𝑢 ∩ 𝑆 ) ) ) |
33 |
|
eleq2 |
⊢ ( 𝑣 = ( 𝑢 ∩ 𝑆 ) → ( 𝑥 ∈ 𝑣 ↔ 𝑥 ∈ ( 𝑢 ∩ 𝑆 ) ) ) |
34 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝑢 ∩ 𝑆 ) ↔ ( 𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑆 ) ) |
35 |
34
|
rbaib |
⊢ ( 𝑥 ∈ 𝑆 → ( 𝑥 ∈ ( 𝑢 ∩ 𝑆 ) ↔ 𝑥 ∈ 𝑢 ) ) |
36 |
35
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ∈ ( 𝑢 ∩ 𝑆 ) ↔ 𝑥 ∈ 𝑢 ) ) |
37 |
33 36
|
sylan9bbr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑣 = ( 𝑢 ∩ 𝑆 ) ) → ( 𝑥 ∈ 𝑣 ↔ 𝑥 ∈ 𝑢 ) ) |
38 |
|
eleq2 |
⊢ ( 𝑣 = ( 𝑢 ∩ 𝑆 ) → ( ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑣 ↔ ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ ( 𝑢 ∩ 𝑆 ) ) ) |
39 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
40 |
|
eqid |
⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) |
41 |
6
|
submmnd |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝐻 ∈ Mnd ) |
42 |
4 41
|
syl |
⊢ ( 𝜑 → 𝐻 ∈ Mnd ) |
43 |
6
|
subcmn |
⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd ) → 𝐻 ∈ CMnd ) |
44 |
2 42 43
|
syl2anc |
⊢ ( 𝜑 → 𝐻 ∈ CMnd ) |
45 |
44
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝐻 ∈ CMnd ) |
46 |
|
elinel2 |
⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑦 ∈ Fin ) |
47 |
46
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑦 ∈ Fin ) |
48 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝐹 : 𝐴 ⟶ 𝑆 ) |
49 |
|
elfpw |
⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ∈ Fin ) ) |
50 |
49
|
simplbi |
⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑦 ⊆ 𝐴 ) |
51 |
50
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑦 ⊆ 𝐴 ) |
52 |
48 51
|
fssresd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑆 ) |
53 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
54 |
53
|
feq3d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ 𝑆 ↔ ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( Base ‘ 𝐻 ) ) ) |
55 |
52 54
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 ↾ 𝑦 ) : 𝑦 ⟶ ( Base ‘ 𝐻 ) ) |
56 |
|
fvex |
⊢ ( 0g ‘ 𝐻 ) ∈ V |
57 |
56
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 0g ‘ 𝐻 ) ∈ V ) |
58 |
52 47 57
|
fdmfifsupp |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 ↾ 𝑦 ) finSupp ( 0g ‘ 𝐻 ) ) |
59 |
39 40 45 47 55 58
|
gsumcl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ ( Base ‘ 𝐻 ) ) |
60 |
59 53
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑆 ) |
61 |
|
elin |
⊢ ( ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ ( 𝑢 ∩ 𝑆 ) ↔ ( ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ∧ ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑆 ) ) |
62 |
61
|
rbaib |
⊢ ( ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑆 → ( ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ ( 𝑢 ∩ 𝑆 ) ↔ ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) |
63 |
60 62
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ ( 𝑢 ∩ 𝑆 ) ↔ ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) |
64 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) |
65 |
47 64 52 6
|
gsumsubm |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) = ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ) |
66 |
65
|
eleq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ↔ ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) |
67 |
63 66
|
bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ ( 𝑢 ∩ 𝑆 ) ↔ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) |
68 |
38 67
|
sylan9bbr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑣 = ( 𝑢 ∩ 𝑆 ) ) → ( ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑣 ↔ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) |
69 |
68
|
an32s |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑣 = ( 𝑢 ∩ 𝑆 ) ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑣 ↔ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) |
70 |
69
|
imbi2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑣 = ( 𝑢 ∩ 𝑆 ) ) ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( 𝑧 ⊆ 𝑦 → ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑣 ) ↔ ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) ) |
71 |
70
|
ralbidva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑣 = ( 𝑢 ∩ 𝑆 ) ) → ( ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑧 ⊆ 𝑦 → ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑣 ) ↔ ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) ) |
72 |
71
|
rexbidv |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑣 = ( 𝑢 ∩ 𝑆 ) ) → ( ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑧 ⊆ 𝑦 → ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑣 ) ↔ ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) ) |
73 |
37 72
|
imbi12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑣 = ( 𝑢 ∩ 𝑆 ) ) → ( ( 𝑥 ∈ 𝑣 → ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑧 ⊆ 𝑦 → ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑣 ) ) ↔ ( 𝑥 ∈ 𝑢 → ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) ) ) |
74 |
25 32 73
|
ralxfr2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ∀ 𝑣 ∈ ( TopOpen ‘ 𝐻 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑧 ⊆ 𝑦 → ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑣 ) ) ↔ ∀ 𝑢 ∈ ( TopOpen ‘ 𝐺 ) ( 𝑥 ∈ 𝑢 → ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑧 ⊆ 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑢 ) ) ) ) |
75 |
22 74
|
bitr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ↔ ∀ 𝑣 ∈ ( TopOpen ‘ 𝐻 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑧 ⊆ 𝑦 → ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑣 ) ) ) ) |
76 |
75
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) ↔ ( 𝑥 ∈ 𝑆 ∧ ∀ 𝑣 ∈ ( TopOpen ‘ 𝐻 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑧 ⊆ 𝑦 → ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑣 ) ) ) ) ) |
77 |
12 76
|
syl5bb |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝐺 tsums 𝐹 ) ∩ 𝑆 ) ↔ ( 𝑥 ∈ 𝑆 ∧ ∀ 𝑣 ∈ ( TopOpen ‘ 𝐻 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑧 ⊆ 𝑦 → ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑣 ) ) ) ) ) |
78 |
|
eqid |
⊢ ( TopOpen ‘ 𝐻 ) = ( TopOpen ‘ 𝐻 ) |
79 |
|
resstps |
⊢ ( ( 𝐺 ∈ TopSp ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → ( 𝐺 ↾s 𝑆 ) ∈ TopSp ) |
80 |
3 4 79
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ↾s 𝑆 ) ∈ TopSp ) |
81 |
6 80
|
eqeltrid |
⊢ ( 𝜑 → 𝐻 ∈ TopSp ) |
82 |
8
|
feq3d |
⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ 𝑆 ↔ 𝐹 : 𝐴 ⟶ ( Base ‘ 𝐻 ) ) ) |
83 |
5 82
|
mpbid |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ( Base ‘ 𝐻 ) ) |
84 |
39 78 18 44 81 1 83
|
eltsms |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐻 tsums 𝐹 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ ∀ 𝑣 ∈ ( TopOpen ‘ 𝐻 ) ( 𝑥 ∈ 𝑣 → ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ∀ 𝑦 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑧 ⊆ 𝑦 → ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ∈ 𝑣 ) ) ) ) ) |
85 |
10 77 84
|
3bitr4rd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐻 tsums 𝐹 ) ↔ 𝑥 ∈ ( ( 𝐺 tsums 𝐹 ) ∩ 𝑆 ) ) ) |
86 |
85
|
eqrdv |
⊢ ( 𝜑 → ( 𝐻 tsums 𝐹 ) = ( ( 𝐺 tsums 𝐹 ) ∩ 𝑆 ) ) |