Metamath Proof Explorer


Theorem tsmsval

Description: Definition of the topological group sum(s) of a collection F ( x ) of values in the group with index set A . (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses tsmsval.b 𝐵 = ( Base ‘ 𝐺 )
tsmsval.j 𝐽 = ( TopOpen ‘ 𝐺 )
tsmsval.s 𝑆 = ( 𝒫 𝐴 ∩ Fin )
tsmsval.l 𝐿 = ran ( 𝑧𝑆 ↦ { 𝑦𝑆𝑧𝑦 } )
tsmsval.g ( 𝜑𝐺𝑉 )
tsmsval.a ( 𝜑𝐴𝑊 )
tsmsval.f ( 𝜑𝐹 : 𝐴𝐵 )
Assertion tsmsval ( 𝜑 → ( 𝐺 tsums 𝐹 ) = ( ( 𝐽 fLimf ( 𝑆 filGen 𝐿 ) ) ‘ ( 𝑦𝑆 ↦ ( 𝐺 Σg ( 𝐹𝑦 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 tsmsval.b 𝐵 = ( Base ‘ 𝐺 )
2 tsmsval.j 𝐽 = ( TopOpen ‘ 𝐺 )
3 tsmsval.s 𝑆 = ( 𝒫 𝐴 ∩ Fin )
4 tsmsval.l 𝐿 = ran ( 𝑧𝑆 ↦ { 𝑦𝑆𝑧𝑦 } )
5 tsmsval.g ( 𝜑𝐺𝑉 )
6 tsmsval.a ( 𝜑𝐴𝑊 )
7 tsmsval.f ( 𝜑𝐹 : 𝐴𝐵 )
8 1 fvexi 𝐵 ∈ V
9 8 a1i ( 𝜑𝐵 ∈ V )
10 fex2 ( ( 𝐹 : 𝐴𝐵𝐴𝑊𝐵 ∈ V ) → 𝐹 ∈ V )
11 7 6 9 10 syl3anc ( 𝜑𝐹 ∈ V )
12 7 fdmd ( 𝜑 → dom 𝐹 = 𝐴 )
13 1 2 3 4 5 11 12 tsmsval2 ( 𝜑 → ( 𝐺 tsums 𝐹 ) = ( ( 𝐽 fLimf ( 𝑆 filGen 𝐿 ) ) ‘ ( 𝑦𝑆 ↦ ( 𝐺 Σg ( 𝐹𝑦 ) ) ) ) )