Database
BASIC TOPOLOGY
Filters and filter bases
Infinite group sum on topological groups
tsmsval
Metamath Proof Explorer
Description: Definition of the topological group sum(s) of a collection F ( x )
of values in the group with index set A . (Contributed by Mario
Carneiro , 2-Sep-2015)
Ref
Expression
Hypotheses
tsmsval.b
⊢ 𝐵 = ( Base ‘ 𝐺 )
tsmsval.j
⊢ 𝐽 = ( TopOpen ‘ 𝐺 )
tsmsval.s
⊢ 𝑆 = ( 𝒫 𝐴 ∩ Fin )
tsmsval.l
⊢ 𝐿 = ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } )
tsmsval.g
⊢ ( 𝜑 → 𝐺 ∈ 𝑉 )
tsmsval.a
⊢ ( 𝜑 → 𝐴 ∈ 𝑊 )
tsmsval.f
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 )
Assertion
tsmsval
⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) = ( ( 𝐽 fLimf ( 𝑆 filGen 𝐿 ) ) ‘ ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) )
Proof
Step
Hyp
Ref
Expression
1
tsmsval.b
⊢ 𝐵 = ( Base ‘ 𝐺 )
2
tsmsval.j
⊢ 𝐽 = ( TopOpen ‘ 𝐺 )
3
tsmsval.s
⊢ 𝑆 = ( 𝒫 𝐴 ∩ Fin )
4
tsmsval.l
⊢ 𝐿 = ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } )
5
tsmsval.g
⊢ ( 𝜑 → 𝐺 ∈ 𝑉 )
6
tsmsval.a
⊢ ( 𝜑 → 𝐴 ∈ 𝑊 )
7
tsmsval.f
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 )
8
1
fvexi
⊢ 𝐵 ∈ V
9
8
a1i
⊢ ( 𝜑 → 𝐵 ∈ V )
10
fex2
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ V ) → 𝐹 ∈ V )
11
7 6 9 10
syl3anc
⊢ ( 𝜑 → 𝐹 ∈ V )
12
7
fdmd
⊢ ( 𝜑 → dom 𝐹 = 𝐴 )
13
1 2 3 4 5 11 12
tsmsval2
⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) = ( ( 𝐽 fLimf ( 𝑆 filGen 𝐿 ) ) ‘ ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) )