Step |
Hyp |
Ref |
Expression |
1 |
|
tsmsval.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
tsmsval.j |
⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) |
3 |
|
tsmsval.s |
⊢ 𝑆 = ( 𝒫 𝐴 ∩ Fin ) |
4 |
|
tsmsval.l |
⊢ 𝐿 = ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) |
5 |
|
tsmsval.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) |
6 |
|
tsmsval2.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑊 ) |
7 |
|
tsmsval2.a |
⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
8 |
|
df-tsms |
⊢ tsums = ( 𝑤 ∈ V , 𝑓 ∈ V ↦ ⦋ ( 𝒫 dom 𝑓 ∩ Fin ) / 𝑠 ⦌ ( ( ( TopOpen ‘ 𝑤 ) fLimf ( 𝑠 filGen ran ( 𝑧 ∈ 𝑠 ↦ { 𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦 } ) ) ) ‘ ( 𝑦 ∈ 𝑠 ↦ ( 𝑤 Σg ( 𝑓 ↾ 𝑦 ) ) ) ) ) |
9 |
8
|
a1i |
⊢ ( 𝜑 → tsums = ( 𝑤 ∈ V , 𝑓 ∈ V ↦ ⦋ ( 𝒫 dom 𝑓 ∩ Fin ) / 𝑠 ⦌ ( ( ( TopOpen ‘ 𝑤 ) fLimf ( 𝑠 filGen ran ( 𝑧 ∈ 𝑠 ↦ { 𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦 } ) ) ) ‘ ( 𝑦 ∈ 𝑠 ↦ ( 𝑤 Σg ( 𝑓 ↾ 𝑦 ) ) ) ) ) ) |
10 |
|
vex |
⊢ 𝑓 ∈ V |
11 |
10
|
dmex |
⊢ dom 𝑓 ∈ V |
12 |
11
|
pwex |
⊢ 𝒫 dom 𝑓 ∈ V |
13 |
12
|
inex1 |
⊢ ( 𝒫 dom 𝑓 ∩ Fin ) ∈ V |
14 |
13
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) → ( 𝒫 dom 𝑓 ∩ Fin ) ∈ V ) |
15 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → 𝑤 = 𝐺 ) |
16 |
15
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → ( TopOpen ‘ 𝑤 ) = ( TopOpen ‘ 𝐺 ) ) |
17 |
16 2
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → ( TopOpen ‘ 𝑤 ) = 𝐽 ) |
18 |
|
id |
⊢ ( 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) → 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) |
19 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) → 𝑓 = 𝐹 ) |
20 |
19
|
dmeqd |
⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) → dom 𝑓 = dom 𝐹 ) |
21 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) → dom 𝐹 = 𝐴 ) |
22 |
20 21
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) → dom 𝑓 = 𝐴 ) |
23 |
22
|
pweqd |
⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) → 𝒫 dom 𝑓 = 𝒫 𝐴 ) |
24 |
23
|
ineq1d |
⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) → ( 𝒫 dom 𝑓 ∩ Fin ) = ( 𝒫 𝐴 ∩ Fin ) ) |
25 |
24 3
|
eqtr4di |
⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) → ( 𝒫 dom 𝑓 ∩ Fin ) = 𝑆 ) |
26 |
18 25
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → 𝑠 = 𝑆 ) |
27 |
26
|
rabeqdv |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → { 𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦 } = { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) |
28 |
26 27
|
mpteq12dv |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → ( 𝑧 ∈ 𝑠 ↦ { 𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦 } ) = ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ) |
29 |
28
|
rneqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → ran ( 𝑧 ∈ 𝑠 ↦ { 𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦 } ) = ran ( 𝑧 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ 𝑧 ⊆ 𝑦 } ) ) |
30 |
29 4
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → ran ( 𝑧 ∈ 𝑠 ↦ { 𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦 } ) = 𝐿 ) |
31 |
26 30
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → ( 𝑠 filGen ran ( 𝑧 ∈ 𝑠 ↦ { 𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦 } ) ) = ( 𝑆 filGen 𝐿 ) ) |
32 |
17 31
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → ( ( TopOpen ‘ 𝑤 ) fLimf ( 𝑠 filGen ran ( 𝑧 ∈ 𝑠 ↦ { 𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦 } ) ) ) = ( 𝐽 fLimf ( 𝑆 filGen 𝐿 ) ) ) |
33 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → 𝑓 = 𝐹 ) |
34 |
33
|
reseq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → ( 𝑓 ↾ 𝑦 ) = ( 𝐹 ↾ 𝑦 ) ) |
35 |
15 34
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → ( 𝑤 Σg ( 𝑓 ↾ 𝑦 ) ) = ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) |
36 |
26 35
|
mpteq12dv |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → ( 𝑦 ∈ 𝑠 ↦ ( 𝑤 Σg ( 𝑓 ↾ 𝑦 ) ) ) = ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) |
37 |
32 36
|
fveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → ( ( ( TopOpen ‘ 𝑤 ) fLimf ( 𝑠 filGen ran ( 𝑧 ∈ 𝑠 ↦ { 𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦 } ) ) ) ‘ ( 𝑦 ∈ 𝑠 ↦ ( 𝑤 Σg ( 𝑓 ↾ 𝑦 ) ) ) ) = ( ( 𝐽 fLimf ( 𝑆 filGen 𝐿 ) ) ‘ ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) ) |
38 |
14 37
|
csbied |
⊢ ( ( 𝜑 ∧ ( 𝑤 = 𝐺 ∧ 𝑓 = 𝐹 ) ) → ⦋ ( 𝒫 dom 𝑓 ∩ Fin ) / 𝑠 ⦌ ( ( ( TopOpen ‘ 𝑤 ) fLimf ( 𝑠 filGen ran ( 𝑧 ∈ 𝑠 ↦ { 𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦 } ) ) ) ‘ ( 𝑦 ∈ 𝑠 ↦ ( 𝑤 Σg ( 𝑓 ↾ 𝑦 ) ) ) ) = ( ( 𝐽 fLimf ( 𝑆 filGen 𝐿 ) ) ‘ ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) ) |
39 |
5
|
elexd |
⊢ ( 𝜑 → 𝐺 ∈ V ) |
40 |
6
|
elexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
41 |
|
fvexd |
⊢ ( 𝜑 → ( ( 𝐽 fLimf ( 𝑆 filGen 𝐿 ) ) ‘ ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) ∈ V ) |
42 |
9 38 39 40 41
|
ovmpod |
⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) = ( ( 𝐽 fLimf ( 𝑆 filGen 𝐿 ) ) ‘ ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) ) |