Step |
Hyp |
Ref |
Expression |
1 |
|
tsmsxp.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
tsmsxp.g |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
3 |
|
tsmsxp.2 |
⊢ ( 𝜑 → 𝐺 ∈ TopGrp ) |
4 |
|
tsmsxp.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
5 |
|
tsmsxp.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑊 ) |
6 |
|
tsmsxp.f |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 × 𝐶 ) ⟶ 𝐵 ) |
7 |
|
tsmsxp.h |
⊢ ( 𝜑 → 𝐻 : 𝐴 ⟶ 𝐵 ) |
8 |
|
tsmsxp.1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑗 ) ∈ ( 𝐺 tsums ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) |
9 |
|
tsmsxp.j |
⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) |
10 |
|
tsmsxp.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
11 |
|
tsmsxp.p |
⊢ + = ( +g ‘ 𝐺 ) |
12 |
|
tsmsxp.m |
⊢ − = ( -g ‘ 𝐺 ) |
13 |
|
tsmsxp.l |
⊢ ( 𝜑 → 𝐿 ∈ 𝐽 ) |
14 |
|
tsmsxp.3 |
⊢ ( 𝜑 → 0 ∈ 𝐿 ) |
15 |
|
tsmsxp.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
16 |
|
tsmsxp.ks |
⊢ ( 𝜑 → dom 𝐷 ⊆ 𝐾 ) |
17 |
|
tsmsxp.d |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝒫 ( 𝐴 × 𝐶 ) ∩ Fin ) ) |
18 |
15
|
elin2d |
⊢ ( 𝜑 → 𝐾 ∈ Fin ) |
19 |
|
elfpw |
⊢ ( 𝐾 ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( 𝐾 ⊆ 𝐴 ∧ 𝐾 ∈ Fin ) ) |
20 |
19
|
simplbi |
⊢ ( 𝐾 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝐾 ⊆ 𝐴 ) |
21 |
15 20
|
syl |
⊢ ( 𝜑 → 𝐾 ⊆ 𝐴 ) |
22 |
21
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) → 𝑗 ∈ 𝐴 ) |
23 |
|
eqid |
⊢ ( 𝒫 𝐶 ∩ Fin ) = ( 𝒫 𝐶 ∩ Fin ) |
24 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐺 ∈ CMnd ) |
25 |
|
tgptps |
⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ TopSp ) |
26 |
3 25
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ TopSp ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐺 ∈ TopSp ) |
28 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐶 ∈ 𝑊 ) |
29 |
|
fovrn |
⊢ ( ( 𝐹 : ( 𝐴 × 𝐶 ) ⟶ 𝐵 ∧ 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) → ( 𝑗 𝐹 𝑘 ) ∈ 𝐵 ) |
30 |
6 29
|
syl3an1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) → ( 𝑗 𝐹 𝑘 ) ∈ 𝐵 ) |
31 |
30
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐶 ) → ( 𝑗 𝐹 𝑘 ) ∈ 𝐵 ) |
32 |
31
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) : 𝐶 ⟶ 𝐵 ) |
33 |
|
df-ima |
⊢ ( ( 𝑔 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) “ 𝐿 ) = ran ( ( 𝑔 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ↾ 𝐿 ) |
34 |
9 1
|
tgptopon |
⊢ ( 𝐺 ∈ TopGrp → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
35 |
3 34
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
36 |
|
toponss |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) ∧ 𝐿 ∈ 𝐽 ) → 𝐿 ⊆ 𝐵 ) |
37 |
35 13 36
|
syl2anc |
⊢ ( 𝜑 → 𝐿 ⊆ 𝐵 ) |
38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐿 ⊆ 𝐵 ) |
39 |
38
|
resmptd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( ( 𝑔 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ↾ 𝐿 ) = ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) |
40 |
39
|
rneqd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ran ( ( 𝑔 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ↾ 𝐿 ) = ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) |
41 |
33 40
|
syl5eq |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( ( 𝑔 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) “ 𝐿 ) = ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) |
42 |
7
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑗 ) ∈ 𝐵 ) |
43 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
44 |
1 11 43 12
|
grpsubval |
⊢ ( ( ( 𝐻 ‘ 𝑗 ) ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) = ( ( 𝐻 ‘ 𝑗 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) ) ) |
45 |
42 44
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑔 ∈ 𝐵 ) → ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) = ( ( 𝐻 ‘ 𝑗 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) ) ) |
46 |
45
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝑔 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) = ( 𝑔 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) ) ) ) |
47 |
|
tgpgrp |
⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) |
48 |
3 47
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
49 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐺 ∈ Grp ) |
50 |
1 43
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑔 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) ∈ 𝐵 ) |
51 |
49 50
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑔 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) ∈ 𝐵 ) |
52 |
1 43
|
grpinvf |
⊢ ( 𝐺 ∈ Grp → ( invg ‘ 𝐺 ) : 𝐵 ⟶ 𝐵 ) |
53 |
49 52
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( invg ‘ 𝐺 ) : 𝐵 ⟶ 𝐵 ) |
54 |
53
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( invg ‘ 𝐺 ) = ( 𝑔 ∈ 𝐵 ↦ ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) ) ) |
55 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) + 𝑦 ) ) = ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) + 𝑦 ) ) ) |
56 |
|
oveq2 |
⊢ ( 𝑦 = ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) → ( ( 𝐻 ‘ 𝑗 ) + 𝑦 ) = ( ( 𝐻 ‘ 𝑗 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) ) ) |
57 |
51 54 55 56
|
fmptco |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) + 𝑦 ) ) ∘ ( invg ‘ 𝐺 ) ) = ( 𝑔 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑔 ) ) ) ) |
58 |
46 57
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝑔 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) = ( ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) + 𝑦 ) ) ∘ ( invg ‘ 𝐺 ) ) ) |
59 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐺 ∈ TopGrp ) |
60 |
9 43
|
grpinvhmeo |
⊢ ( 𝐺 ∈ TopGrp → ( invg ‘ 𝐺 ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
61 |
59 60
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( invg ‘ 𝐺 ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
62 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) + 𝑦 ) ) = ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) + 𝑦 ) ) |
63 |
62 1 11 9
|
tgplacthmeo |
⊢ ( ( 𝐺 ∈ TopGrp ∧ ( 𝐻 ‘ 𝑗 ) ∈ 𝐵 ) → ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) + 𝑦 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
64 |
59 42 63
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) + 𝑦 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
65 |
|
hmeoco |
⊢ ( ( ( invg ‘ 𝐺 ) ∈ ( 𝐽 Homeo 𝐽 ) ∧ ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) + 𝑦 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) → ( ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) + 𝑦 ) ) ∘ ( invg ‘ 𝐺 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
66 |
61 64 65
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( ( 𝑦 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) + 𝑦 ) ) ∘ ( invg ‘ 𝐺 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
67 |
58 66
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝑔 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
68 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐿 ∈ 𝐽 ) |
69 |
|
hmeoima |
⊢ ( ( ( 𝑔 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ∧ 𝐿 ∈ 𝐽 ) → ( ( 𝑔 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) “ 𝐿 ) ∈ 𝐽 ) |
70 |
67 68 69
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( ( 𝑔 ∈ 𝐵 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) “ 𝐿 ) ∈ 𝐽 ) |
71 |
41 70
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ∈ 𝐽 ) |
72 |
1 10 12
|
grpsubid1 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐻 ‘ 𝑗 ) ∈ 𝐵 ) → ( ( 𝐻 ‘ 𝑗 ) − 0 ) = ( 𝐻 ‘ 𝑗 ) ) |
73 |
49 42 72
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝑗 ) − 0 ) = ( 𝐻 ‘ 𝑗 ) ) |
74 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 0 ∈ 𝐿 ) |
75 |
|
ovex |
⊢ ( ( 𝐻 ‘ 𝑗 ) − 0 ) ∈ V |
76 |
|
eqid |
⊢ ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) = ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) |
77 |
|
oveq2 |
⊢ ( 𝑔 = 0 → ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) = ( ( 𝐻 ‘ 𝑗 ) − 0 ) ) |
78 |
76 77
|
elrnmpt1s |
⊢ ( ( 0 ∈ 𝐿 ∧ ( ( 𝐻 ‘ 𝑗 ) − 0 ) ∈ V ) → ( ( 𝐻 ‘ 𝑗 ) − 0 ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) |
79 |
74 75 78
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( ( 𝐻 ‘ 𝑗 ) − 0 ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) |
80 |
73 79
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑗 ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) |
81 |
1 9 23 24 27 28 32 8 71 80
|
tsmsi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ∃ 𝑦 ∈ ( 𝒫 𝐶 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) |
82 |
22 81
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) → ∃ 𝑦 ∈ ( 𝒫 𝐶 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) |
83 |
82
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ 𝐾 ∃ 𝑦 ∈ ( 𝒫 𝐶 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) |
84 |
|
sseq1 |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑗 ) → ( 𝑦 ⊆ 𝑧 ↔ ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 ) ) |
85 |
84
|
imbi1d |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑗 ) → ( ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ↔ ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) ) |
86 |
85
|
ralbidv |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑗 ) → ( ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ↔ ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) ) |
87 |
86
|
ac6sfi |
⊢ ( ( 𝐾 ∈ Fin ∧ ∀ 𝑗 ∈ 𝐾 ∃ 𝑦 ∈ ( 𝒫 𝐶 ∩ Fin ) ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( 𝑦 ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) → ∃ 𝑓 ( 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ∧ ∀ 𝑗 ∈ 𝐾 ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) ) |
88 |
18 83 87
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ∧ ∀ 𝑗 ∈ 𝐾 ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) ) |
89 |
|
frn |
⊢ ( 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) → ran 𝑓 ⊆ ( 𝒫 𝐶 ∩ Fin ) ) |
90 |
89
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ran 𝑓 ⊆ ( 𝒫 𝐶 ∩ Fin ) ) |
91 |
|
inss1 |
⊢ ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝒫 𝐶 |
92 |
90 91
|
sstrdi |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ran 𝑓 ⊆ 𝒫 𝐶 ) |
93 |
|
sspwuni |
⊢ ( ran 𝑓 ⊆ 𝒫 𝐶 ↔ ∪ ran 𝑓 ⊆ 𝐶 ) |
94 |
92 93
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ∪ ran 𝑓 ⊆ 𝐶 ) |
95 |
|
elfpw |
⊢ ( 𝐷 ∈ ( 𝒫 ( 𝐴 × 𝐶 ) ∩ Fin ) ↔ ( 𝐷 ⊆ ( 𝐴 × 𝐶 ) ∧ 𝐷 ∈ Fin ) ) |
96 |
95
|
simplbi |
⊢ ( 𝐷 ∈ ( 𝒫 ( 𝐴 × 𝐶 ) ∩ Fin ) → 𝐷 ⊆ ( 𝐴 × 𝐶 ) ) |
97 |
|
rnss |
⊢ ( 𝐷 ⊆ ( 𝐴 × 𝐶 ) → ran 𝐷 ⊆ ran ( 𝐴 × 𝐶 ) ) |
98 |
17 96 97
|
3syl |
⊢ ( 𝜑 → ran 𝐷 ⊆ ran ( 𝐴 × 𝐶 ) ) |
99 |
|
rnxpss |
⊢ ran ( 𝐴 × 𝐶 ) ⊆ 𝐶 |
100 |
98 99
|
sstrdi |
⊢ ( 𝜑 → ran 𝐷 ⊆ 𝐶 ) |
101 |
100
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ran 𝐷 ⊆ 𝐶 ) |
102 |
94 101
|
unssd |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ∪ ran 𝑓 ∪ ran 𝐷 ) ⊆ 𝐶 ) |
103 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → 𝐾 ∈ Fin ) |
104 |
|
ffn |
⊢ ( 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) → 𝑓 Fn 𝐾 ) |
105 |
104
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → 𝑓 Fn 𝐾 ) |
106 |
|
dffn4 |
⊢ ( 𝑓 Fn 𝐾 ↔ 𝑓 : 𝐾 –onto→ ran 𝑓 ) |
107 |
105 106
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → 𝑓 : 𝐾 –onto→ ran 𝑓 ) |
108 |
|
fofi |
⊢ ( ( 𝐾 ∈ Fin ∧ 𝑓 : 𝐾 –onto→ ran 𝑓 ) → ran 𝑓 ∈ Fin ) |
109 |
103 107 108
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ran 𝑓 ∈ Fin ) |
110 |
|
inss2 |
⊢ ( 𝒫 𝐶 ∩ Fin ) ⊆ Fin |
111 |
90 110
|
sstrdi |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ran 𝑓 ⊆ Fin ) |
112 |
|
unifi |
⊢ ( ( ran 𝑓 ∈ Fin ∧ ran 𝑓 ⊆ Fin ) → ∪ ran 𝑓 ∈ Fin ) |
113 |
109 111 112
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ∪ ran 𝑓 ∈ Fin ) |
114 |
|
elinel2 |
⊢ ( 𝐷 ∈ ( 𝒫 ( 𝐴 × 𝐶 ) ∩ Fin ) → 𝐷 ∈ Fin ) |
115 |
|
rnfi |
⊢ ( 𝐷 ∈ Fin → ran 𝐷 ∈ Fin ) |
116 |
17 114 115
|
3syl |
⊢ ( 𝜑 → ran 𝐷 ∈ Fin ) |
117 |
116
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ran 𝐷 ∈ Fin ) |
118 |
|
unfi |
⊢ ( ( ∪ ran 𝑓 ∈ Fin ∧ ran 𝐷 ∈ Fin ) → ( ∪ ran 𝑓 ∪ ran 𝐷 ) ∈ Fin ) |
119 |
113 117 118
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ∪ ran 𝑓 ∪ ran 𝐷 ) ∈ Fin ) |
120 |
|
elfpw |
⊢ ( ( ∪ ran 𝑓 ∪ ran 𝐷 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ↔ ( ( ∪ ran 𝑓 ∪ ran 𝐷 ) ⊆ 𝐶 ∧ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ∈ Fin ) ) |
121 |
102 119 120
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ∪ ran 𝑓 ∪ ran 𝐷 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ) |
122 |
121
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ∧ ∀ 𝑗 ∈ 𝐾 ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) ) → ( ∪ ran 𝑓 ∪ ran 𝐷 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ) |
123 |
|
ssun2 |
⊢ ran 𝐷 ⊆ ( ∪ ran 𝑓 ∪ ran 𝐷 ) |
124 |
123
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ∧ ∀ 𝑗 ∈ 𝐾 ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) ) → ran 𝐷 ⊆ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) |
125 |
121
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ∪ ran 𝑓 ∪ ran 𝐷 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ) |
126 |
|
fvssunirn |
⊢ ( 𝑓 ‘ 𝑗 ) ⊆ ∪ ran 𝑓 |
127 |
|
ssun1 |
⊢ ∪ ran 𝑓 ⊆ ( ∪ ran 𝑓 ∪ ran 𝐷 ) |
128 |
126 127
|
sstri |
⊢ ( 𝑓 ‘ 𝑗 ) ⊆ ( ∪ ran 𝑓 ∪ ran 𝐷 ) |
129 |
|
id |
⊢ ( 𝑧 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → 𝑧 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) |
130 |
128 129
|
sseqtrrid |
⊢ ( 𝑧 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 ) |
131 |
|
pm5.5 |
⊢ ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ↔ ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) |
132 |
130 131
|
syl |
⊢ ( 𝑧 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → ( ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ↔ ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) |
133 |
|
reseq2 |
⊢ ( 𝑧 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) = ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) |
134 |
133
|
oveq2d |
⊢ ( 𝑧 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) = ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) |
135 |
134
|
eleq1d |
⊢ ( 𝑧 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → ( ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ↔ ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) |
136 |
132 135
|
bitrd |
⊢ ( 𝑧 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → ( ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ↔ ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) |
137 |
136
|
rspcv |
⊢ ( ( ∪ ran 𝑓 ∪ ran 𝐷 ) ∈ ( 𝒫 𝐶 ∩ Fin ) → ( ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) |
138 |
125 137
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) |
139 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → 𝐺 ∈ CMnd ) |
140 |
|
cmnmnd |
⊢ ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd ) |
141 |
139 140
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → 𝐺 ∈ Mnd ) |
142 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → 𝑗 ∈ 𝐾 ) |
143 |
119
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ∪ ran 𝑓 ∪ ran 𝐷 ) ∈ Fin ) |
144 |
102
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ∪ ran 𝑓 ∪ ran 𝐷 ) ⊆ 𝐶 ) |
145 |
144
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) → 𝑘 ∈ 𝐶 ) |
146 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) → 𝐹 : ( 𝐴 × 𝐶 ) ⟶ 𝐵 ) |
147 |
146 22
|
jca |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) → ( 𝐹 : ( 𝐴 × 𝐶 ) ⟶ 𝐵 ∧ 𝑗 ∈ 𝐴 ) ) |
148 |
29
|
3expa |
⊢ ( ( ( 𝐹 : ( 𝐴 × 𝐶 ) ⟶ 𝐵 ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐶 ) → ( 𝑗 𝐹 𝑘 ) ∈ 𝐵 ) |
149 |
147 148
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑘 ∈ 𝐶 ) → ( 𝑗 𝐹 𝑘 ) ∈ 𝐵 ) |
150 |
149
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ 𝐶 ) → ( 𝑗 𝐹 𝑘 ) ∈ 𝐵 ) |
151 |
145 150
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) → ( 𝑗 𝐹 𝑘 ) ∈ 𝐵 ) |
152 |
151
|
fmpttd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) : ( ∪ ran 𝑓 ∪ ran 𝐷 ) ⟶ 𝐵 ) |
153 |
|
eqid |
⊢ ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) = ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) |
154 |
|
ovexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) → ( 𝑗 𝐹 𝑘 ) ∈ V ) |
155 |
10
|
fvexi |
⊢ 0 ∈ V |
156 |
155
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → 0 ∈ V ) |
157 |
153 143 154 156
|
fsuppmptdm |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) finSupp 0 ) |
158 |
1 10 139 143 152 157
|
gsumcl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐺 Σg ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ∈ 𝐵 ) |
159 |
|
velsn |
⊢ ( 𝑦 ∈ { 𝑗 } ↔ 𝑦 = 𝑗 ) |
160 |
|
ovres |
⊢ ( ( 𝑦 ∈ { 𝑗 } ∧ 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) → ( 𝑦 ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) 𝑘 ) = ( 𝑦 𝐹 𝑘 ) ) |
161 |
159 160
|
sylanbr |
⊢ ( ( 𝑦 = 𝑗 ∧ 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) → ( 𝑦 ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) 𝑘 ) = ( 𝑦 𝐹 𝑘 ) ) |
162 |
|
oveq1 |
⊢ ( 𝑦 = 𝑗 → ( 𝑦 𝐹 𝑘 ) = ( 𝑗 𝐹 𝑘 ) ) |
163 |
162
|
adantr |
⊢ ( ( 𝑦 = 𝑗 ∧ 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) → ( 𝑦 𝐹 𝑘 ) = ( 𝑗 𝐹 𝑘 ) ) |
164 |
161 163
|
eqtrd |
⊢ ( ( 𝑦 = 𝑗 ∧ 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) → ( 𝑦 ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) 𝑘 ) = ( 𝑗 𝐹 𝑘 ) ) |
165 |
164
|
mpteq2dva |
⊢ ( 𝑦 = 𝑗 → ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑦 ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) 𝑘 ) ) = ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) |
166 |
165
|
oveq2d |
⊢ ( 𝑦 = 𝑗 → ( 𝐺 Σg ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑦 ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) 𝑘 ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) |
167 |
1 166
|
gsumsn |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑗 ∈ 𝐾 ∧ ( 𝐺 Σg ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑦 ∈ { 𝑗 } ↦ ( 𝐺 Σg ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑦 ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) 𝑘 ) ) ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) |
168 |
141 142 158 167
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐺 Σg ( 𝑦 ∈ { 𝑗 } ↦ ( 𝐺 Σg ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑦 ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) 𝑘 ) ) ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) |
169 |
|
snfi |
⊢ { 𝑗 } ∈ Fin |
170 |
169
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → { 𝑗 } ∈ Fin ) |
171 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → 𝐹 : ( 𝐴 × 𝐶 ) ⟶ 𝐵 ) |
172 |
22
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → 𝑗 ∈ 𝐴 ) |
173 |
172
|
snssd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → { 𝑗 } ⊆ 𝐴 ) |
174 |
|
xpss12 |
⊢ ( ( { 𝑗 } ⊆ 𝐴 ∧ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ⊆ 𝐶 ) → ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ⊆ ( 𝐴 × 𝐶 ) ) |
175 |
173 144 174
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ⊆ ( 𝐴 × 𝐶 ) ) |
176 |
171 175
|
fssresd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) : ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ⟶ 𝐵 ) |
177 |
|
xpfi |
⊢ ( ( { 𝑗 } ∈ Fin ∧ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ∈ Fin ) → ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ∈ Fin ) |
178 |
169 143 177
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ∈ Fin ) |
179 |
176 178 156
|
fdmfifsupp |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) finSupp 0 ) |
180 |
1 10 139 170 143 176 179
|
gsumxp |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) = ( 𝐺 Σg ( 𝑦 ∈ { 𝑗 } ↦ ( 𝐺 Σg ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑦 ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) 𝑘 ) ) ) ) ) ) |
181 |
144
|
resmptd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) = ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) |
182 |
181
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) |
183 |
168 180 182
|
3eqtr4rd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) |
184 |
183
|
eleq1d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ↔ ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) |
185 |
|
ovex |
⊢ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ∈ V |
186 |
76 185
|
elrnmpti |
⊢ ( ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ↔ ∃ 𝑔 ∈ 𝐿 ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) = ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) |
187 |
|
isabl |
⊢ ( 𝐺 ∈ Abel ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd ) ) |
188 |
48 2 187
|
sylanbrc |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
189 |
188
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑔 ∈ 𝐿 ) → 𝐺 ∈ Abel ) |
190 |
22 42
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) → ( 𝐻 ‘ 𝑗 ) ∈ 𝐵 ) |
191 |
190
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑔 ∈ 𝐿 ) → ( 𝐻 ‘ 𝑗 ) ∈ 𝐵 ) |
192 |
37
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → 𝐿 ⊆ 𝐵 ) |
193 |
192
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑔 ∈ 𝐿 ) → 𝑔 ∈ 𝐵 ) |
194 |
1 12 189 191 193
|
ablnncan |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑔 ∈ 𝐿 ) → ( ( 𝐻 ‘ 𝑗 ) − ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) = 𝑔 ) |
195 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑔 ∈ 𝐿 ) → 𝑔 ∈ 𝐿 ) |
196 |
194 195
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑔 ∈ 𝐿 ) → ( ( 𝐻 ‘ 𝑗 ) − ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ∈ 𝐿 ) |
197 |
|
oveq2 |
⊢ ( ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) = ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) → ( ( 𝐻 ‘ 𝑗 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) = ( ( 𝐻 ‘ 𝑗 ) − ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) |
198 |
197
|
eleq1d |
⊢ ( ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) = ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) → ( ( ( 𝐻 ‘ 𝑗 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ↔ ( ( 𝐻 ‘ 𝑗 ) − ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ∈ 𝐿 ) ) |
199 |
196 198
|
syl5ibrcom |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑔 ∈ 𝐿 ) → ( ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) = ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) → ( ( 𝐻 ‘ 𝑗 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) ) |
200 |
199
|
rexlimdva |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ∃ 𝑔 ∈ 𝐿 ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) = ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) → ( ( 𝐻 ‘ 𝑗 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) ) |
201 |
186 200
|
syl5bi |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) → ( ( 𝐻 ‘ 𝑗 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) ) |
202 |
184 201
|
sylbid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) → ( ( 𝐻 ‘ 𝑗 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) ) |
203 |
138 202
|
syld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐾 ) ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) → ( ( 𝐻 ‘ 𝑗 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) ) |
204 |
203
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) ∧ 𝑗 ∈ 𝐾 ) → ( ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) → ( ( 𝐻 ‘ 𝑗 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) ) |
205 |
204
|
ralimdva |
⊢ ( ( 𝜑 ∧ 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ) → ( ∀ 𝑗 ∈ 𝐾 ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) → ∀ 𝑗 ∈ 𝐾 ( ( 𝐻 ‘ 𝑗 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) ) |
206 |
205
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ∧ ∀ 𝑗 ∈ 𝐾 ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) ) → ∀ 𝑗 ∈ 𝐾 ( ( 𝐻 ‘ 𝑗 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) |
207 |
|
fveq2 |
⊢ ( 𝑗 = 𝑥 → ( 𝐻 ‘ 𝑗 ) = ( 𝐻 ‘ 𝑥 ) ) |
208 |
|
sneq |
⊢ ( 𝑗 = 𝑥 → { 𝑗 } = { 𝑥 } ) |
209 |
208
|
xpeq1d |
⊢ ( 𝑗 = 𝑥 → ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) = ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) |
210 |
209
|
reseq2d |
⊢ ( 𝑗 = 𝑥 → ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) = ( 𝐹 ↾ ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) |
211 |
210
|
oveq2d |
⊢ ( 𝑗 = 𝑥 → ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) |
212 |
207 211
|
oveq12d |
⊢ ( 𝑗 = 𝑥 → ( ( 𝐻 ‘ 𝑗 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) = ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ) |
213 |
212
|
eleq1d |
⊢ ( 𝑗 = 𝑥 → ( ( ( 𝐻 ‘ 𝑗 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ↔ ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) ) |
214 |
213
|
cbvralvw |
⊢ ( ∀ 𝑗 ∈ 𝐾 ( ( 𝐻 ‘ 𝑗 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑗 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ↔ ∀ 𝑥 ∈ 𝐾 ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) |
215 |
206 214
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ∧ ∀ 𝑗 ∈ 𝐾 ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) ) → ∀ 𝑥 ∈ 𝐾 ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) |
216 |
|
sseq2 |
⊢ ( 𝑛 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → ( ran 𝐷 ⊆ 𝑛 ↔ ran 𝐷 ⊆ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) |
217 |
|
xpeq2 |
⊢ ( 𝑛 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → ( { 𝑥 } × 𝑛 ) = ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) |
218 |
217
|
reseq2d |
⊢ ( 𝑛 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → ( 𝐹 ↾ ( { 𝑥 } × 𝑛 ) ) = ( 𝐹 ↾ ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) |
219 |
218
|
oveq2d |
⊢ ( 𝑛 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × 𝑛 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) |
220 |
219
|
oveq2d |
⊢ ( 𝑛 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × 𝑛 ) ) ) ) = ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ) |
221 |
220
|
eleq1d |
⊢ ( 𝑛 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → ( ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × 𝑛 ) ) ) ) ∈ 𝐿 ↔ ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) ) |
222 |
221
|
ralbidv |
⊢ ( 𝑛 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → ( ∀ 𝑥 ∈ 𝐾 ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × 𝑛 ) ) ) ) ∈ 𝐿 ↔ ∀ 𝑥 ∈ 𝐾 ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) ) |
223 |
216 222
|
anbi12d |
⊢ ( 𝑛 = ( ∪ ran 𝑓 ∪ ran 𝐷 ) → ( ( ran 𝐷 ⊆ 𝑛 ∧ ∀ 𝑥 ∈ 𝐾 ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × 𝑛 ) ) ) ) ∈ 𝐿 ) ↔ ( ran 𝐷 ⊆ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ∧ ∀ 𝑥 ∈ 𝐾 ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) ) ) |
224 |
223
|
rspcev |
⊢ ( ( ( ∪ ran 𝑓 ∪ ran 𝐷 ) ∈ ( 𝒫 𝐶 ∩ Fin ) ∧ ( ran 𝐷 ⊆ ( ∪ ran 𝑓 ∪ ran 𝐷 ) ∧ ∀ 𝑥 ∈ 𝐾 ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × ( ∪ ran 𝑓 ∪ ran 𝐷 ) ) ) ) ) ∈ 𝐿 ) ) → ∃ 𝑛 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ran 𝐷 ⊆ 𝑛 ∧ ∀ 𝑥 ∈ 𝐾 ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × 𝑛 ) ) ) ) ∈ 𝐿 ) ) |
225 |
122 124 215 224
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝐾 ⟶ ( 𝒫 𝐶 ∩ Fin ) ∧ ∀ 𝑗 ∈ 𝐾 ∀ 𝑧 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝑧 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ↾ 𝑧 ) ) ∈ ran ( 𝑔 ∈ 𝐿 ↦ ( ( 𝐻 ‘ 𝑗 ) − 𝑔 ) ) ) ) ) → ∃ 𝑛 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ran 𝐷 ⊆ 𝑛 ∧ ∀ 𝑥 ∈ 𝐾 ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × 𝑛 ) ) ) ) ∈ 𝐿 ) ) |
226 |
88 225
|
exlimddv |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ( 𝒫 𝐶 ∩ Fin ) ( ran 𝐷 ⊆ 𝑛 ∧ ∀ 𝑥 ∈ 𝐾 ( ( 𝐻 ‘ 𝑥 ) − ( 𝐺 Σg ( 𝐹 ↾ ( { 𝑥 } × 𝑛 ) ) ) ) ∈ 𝐿 ) ) |