Step |
Hyp |
Ref |
Expression |
1 |
|
istsr.1 |
⊢ 𝑋 = dom 𝑅 |
2 |
1
|
istsr2 |
⊢ ( 𝑅 ∈ TosetRel ↔ ( 𝑅 ∈ PosetRel ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑅 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) |
3 |
2
|
simprbi |
⊢ ( 𝑅 ∈ TosetRel → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑅 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) |
4 |
|
breq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝑅 𝑦 ↔ 𝐴 𝑅 𝑦 ) ) |
5 |
|
breq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑦 𝑅 𝑥 ↔ 𝑦 𝑅 𝐴 ) ) |
6 |
4 5
|
orbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 𝑅 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ( 𝐴 𝑅 𝑦 ∨ 𝑦 𝑅 𝐴 ) ) ) |
7 |
|
breq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 𝑅 𝑦 ↔ 𝐴 𝑅 𝐵 ) ) |
8 |
|
breq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 𝑅 𝐴 ↔ 𝐵 𝑅 𝐴 ) ) |
9 |
7 8
|
orbi12d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 𝑅 𝑦 ∨ 𝑦 𝑅 𝐴 ) ↔ ( 𝐴 𝑅 𝐵 ∨ 𝐵 𝑅 𝐴 ) ) ) |
10 |
6 9
|
rspc2v |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑅 𝑦 ∨ 𝑦 𝑅 𝑥 ) → ( 𝐴 𝑅 𝐵 ∨ 𝐵 𝑅 𝐴 ) ) ) |
11 |
3 10
|
syl5com |
⊢ ( 𝑅 ∈ TosetRel → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑅 𝐵 ∨ 𝐵 𝑅 𝐴 ) ) ) |
12 |
11
|
3impib |
⊢ ( ( 𝑅 ∈ TosetRel ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑅 𝐵 ∨ 𝐵 𝑅 𝐴 ) ) |