Metamath Proof Explorer


Theorem tsrlin

Description: A toset is a linear order. (Contributed by Mario Carneiro, 9-Sep-2015)

Ref Expression
Hypothesis istsr.1 𝑋 = dom 𝑅
Assertion tsrlin ( ( 𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝑅 𝐵𝐵 𝑅 𝐴 ) )

Proof

Step Hyp Ref Expression
1 istsr.1 𝑋 = dom 𝑅
2 1 istsr2 ( 𝑅 ∈ TosetRel ↔ ( 𝑅 ∈ PosetRel ∧ ∀ 𝑥𝑋𝑦𝑋 ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) ) )
3 2 simprbi ( 𝑅 ∈ TosetRel → ∀ 𝑥𝑋𝑦𝑋 ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) )
4 breq1 ( 𝑥 = 𝐴 → ( 𝑥 𝑅 𝑦𝐴 𝑅 𝑦 ) )
5 breq2 ( 𝑥 = 𝐴 → ( 𝑦 𝑅 𝑥𝑦 𝑅 𝐴 ) )
6 4 5 orbi12d ( 𝑥 = 𝐴 → ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) ↔ ( 𝐴 𝑅 𝑦𝑦 𝑅 𝐴 ) ) )
7 breq2 ( 𝑦 = 𝐵 → ( 𝐴 𝑅 𝑦𝐴 𝑅 𝐵 ) )
8 breq1 ( 𝑦 = 𝐵 → ( 𝑦 𝑅 𝐴𝐵 𝑅 𝐴 ) )
9 7 8 orbi12d ( 𝑦 = 𝐵 → ( ( 𝐴 𝑅 𝑦𝑦 𝑅 𝐴 ) ↔ ( 𝐴 𝑅 𝐵𝐵 𝑅 𝐴 ) ) )
10 6 9 rspc2v ( ( 𝐴𝑋𝐵𝑋 ) → ( ∀ 𝑥𝑋𝑦𝑋 ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) → ( 𝐴 𝑅 𝐵𝐵 𝑅 𝐴 ) ) )
11 3 10 syl5com ( 𝑅 ∈ TosetRel → ( ( 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝑅 𝐵𝐵 𝑅 𝐴 ) ) )
12 11 3impib ( ( 𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝑅 𝐵𝐵 𝑅 𝐴 ) )