| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ttgval.n | 
							⊢ 𝐺  =  ( toTG ‘ 𝐻 )  | 
						
						
							| 2 | 
							
								
							 | 
							ttgbas.1 | 
							⊢ 𝐵  =  ( Base ‘ 𝐻 )  | 
						
						
							| 3 | 
							
								
							 | 
							baseid | 
							⊢ Base  =  Slot  ( Base ‘ ndx )  | 
						
						
							| 4 | 
							
								
							 | 
							slotslnbpsd | 
							⊢ ( ( ( LineG ‘ ndx )  ≠  ( Base ‘ ndx )  ∧  ( LineG ‘ ndx )  ≠  ( +g ‘ ndx ) )  ∧  ( ( LineG ‘ ndx )  ≠  (  ·𝑠  ‘ ndx )  ∧  ( LineG ‘ ndx )  ≠  ( dist ‘ ndx ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( ( LineG ‘ ndx )  ≠  ( Base ‘ ndx )  ∧  ( LineG ‘ ndx )  ≠  ( +g ‘ ndx ) )  ∧  ( ( LineG ‘ ndx )  ≠  (  ·𝑠  ‘ ndx )  ∧  ( LineG ‘ ndx )  ≠  ( dist ‘ ndx ) ) )  →  ( LineG ‘ ndx )  ≠  ( Base ‘ ndx ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							ax-mp | 
							⊢ ( LineG ‘ ndx )  ≠  ( Base ‘ ndx )  | 
						
						
							| 7 | 
							
								6
							 | 
							necomi | 
							⊢ ( Base ‘ ndx )  ≠  ( LineG ‘ ndx )  | 
						
						
							| 8 | 
							
								
							 | 
							slotsinbpsd | 
							⊢ ( ( ( Itv ‘ ndx )  ≠  ( Base ‘ ndx )  ∧  ( Itv ‘ ndx )  ≠  ( +g ‘ ndx ) )  ∧  ( ( Itv ‘ ndx )  ≠  (  ·𝑠  ‘ ndx )  ∧  ( Itv ‘ ndx )  ≠  ( dist ‘ ndx ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( ( Itv ‘ ndx )  ≠  ( Base ‘ ndx )  ∧  ( Itv ‘ ndx )  ≠  ( +g ‘ ndx ) )  ∧  ( ( Itv ‘ ndx )  ≠  (  ·𝑠  ‘ ndx )  ∧  ( Itv ‘ ndx )  ≠  ( dist ‘ ndx ) ) )  →  ( Itv ‘ ndx )  ≠  ( Base ‘ ndx ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							ax-mp | 
							⊢ ( Itv ‘ ndx )  ≠  ( Base ‘ ndx )  | 
						
						
							| 11 | 
							
								10
							 | 
							necomi | 
							⊢ ( Base ‘ ndx )  ≠  ( Itv ‘ ndx )  | 
						
						
							| 12 | 
							
								1 3 7 11
							 | 
							ttglem | 
							⊢ ( Base ‘ 𝐻 )  =  ( Base ‘ 𝐺 )  | 
						
						
							| 13 | 
							
								2 12
							 | 
							eqtri | 
							⊢ 𝐵  =  ( Base ‘ 𝐺 )  |