| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ttgval.n | 
							⊢ 𝐺  =  ( toTG ‘ 𝐻 )  | 
						
						
							| 2 | 
							
								
							 | 
							ttgitvval.i | 
							⊢ 𝐼  =  ( Itv ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							ttgitvval.b | 
							⊢ 𝑃  =  ( Base ‘ 𝐻 )  | 
						
						
							| 4 | 
							
								
							 | 
							ttgitvval.m | 
							⊢  −   =  ( -g ‘ 𝐻 )  | 
						
						
							| 5 | 
							
								
							 | 
							ttgitvval.s | 
							⊢  ·   =  (  ·𝑠  ‘ 𝐻 )  | 
						
						
							| 6 | 
							
								1 3 4 5 2
							 | 
							ttgval | 
							⊢ ( 𝐻  ∈  𝑉  →  ( 𝐺  =  ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝑃 ,  𝑦  ∈  𝑃  ↦  { 𝑧  ∈  𝑃  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝑃 ,  𝑦  ∈  𝑃  ↦  { 𝑧  ∈  𝑃  ∣  ( 𝑧  ∈  ( 𝑥 𝐼 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝐼 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝐼 𝑧 ) ) } ) 〉 )  ∧  𝐼  =  ( 𝑥  ∈  𝑃 ,  𝑦  ∈  𝑃  ↦  { 𝑧  ∈  𝑃  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							simprd | 
							⊢ ( 𝐻  ∈  𝑉  →  𝐼  =  ( 𝑥  ∈  𝑃 ,  𝑦  ∈  𝑃  ↦  { 𝑧  ∈  𝑃  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  →  𝐼  =  ( 𝑥  ∈  𝑃 ,  𝑦  ∈  𝑃  ↦  { 𝑧  ∈  𝑃  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( 𝐻  ∈  𝑉  ∧  𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  ∧  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) )  →  𝑥  =  𝑋 )  | 
						
						
							| 10 | 
							
								9
							 | 
							oveq2d | 
							⊢ ( ( ( 𝐻  ∈  𝑉  ∧  𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  ∧  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) )  →  ( 𝑧  −  𝑥 )  =  ( 𝑧  −  𝑋 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( 𝐻  ∈  𝑉  ∧  𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  ∧  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) )  →  𝑦  =  𝑌 )  | 
						
						
							| 12 | 
							
								11 9
							 | 
							oveq12d | 
							⊢ ( ( ( 𝐻  ∈  𝑉  ∧  𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  ∧  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) )  →  ( 𝑦  −  𝑥 )  =  ( 𝑌  −  𝑋 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							oveq2d | 
							⊢ ( ( ( 𝐻  ∈  𝑉  ∧  𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  ∧  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) )  →  ( 𝑘  ·  ( 𝑦  −  𝑥 ) )  =  ( 𝑘  ·  ( 𝑌  −  𝑋 ) ) )  | 
						
						
							| 14 | 
							
								10 13
							 | 
							eqeq12d | 
							⊢ ( ( ( 𝐻  ∈  𝑉  ∧  𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  ∧  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) )  →  ( ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) )  ↔  ( 𝑧  −  𝑋 )  =  ( 𝑘  ·  ( 𝑌  −  𝑋 ) ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							rexbidv | 
							⊢ ( ( ( 𝐻  ∈  𝑉  ∧  𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  ∧  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) )  →  ( ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) )  ↔  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑋 )  =  ( 𝑘  ·  ( 𝑌  −  𝑋 ) ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							rabbidv | 
							⊢ ( ( ( 𝐻  ∈  𝑉  ∧  𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  ∧  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) )  →  { 𝑧  ∈  𝑃  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) }  =  { 𝑧  ∈  𝑃  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑋 )  =  ( 𝑘  ·  ( 𝑌  −  𝑋 ) ) } )  | 
						
						
							| 17 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  →  𝑋  ∈  𝑃 )  | 
						
						
							| 18 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  →  𝑌  ∈  𝑃 )  | 
						
						
							| 19 | 
							
								3
							 | 
							fvexi | 
							⊢ 𝑃  ∈  V  | 
						
						
							| 20 | 
							
								19
							 | 
							rabex | 
							⊢ { 𝑧  ∈  𝑃  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑋 )  =  ( 𝑘  ·  ( 𝑌  −  𝑋 ) ) }  ∈  V  | 
						
						
							| 21 | 
							
								20
							 | 
							a1i | 
							⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  →  { 𝑧  ∈  𝑃  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑋 )  =  ( 𝑘  ·  ( 𝑌  −  𝑋 ) ) }  ∈  V )  | 
						
						
							| 22 | 
							
								8 16 17 18 21
							 | 
							ovmpod | 
							⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  →  ( 𝑋 𝐼 𝑌 )  =  { 𝑧  ∈  𝑃  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑋 )  =  ( 𝑘  ·  ( 𝑌  −  𝑋 ) ) } )  |