Step |
Hyp |
Ref |
Expression |
1 |
|
ttgval.n |
⊢ 𝐺 = ( toTG ‘ 𝐻 ) |
2 |
|
ttgval.b |
⊢ 𝐵 = ( Base ‘ 𝐻 ) |
3 |
|
ttgval.m |
⊢ − = ( -g ‘ 𝐻 ) |
4 |
|
ttgval.s |
⊢ · = ( ·𝑠 ‘ 𝐻 ) |
5 |
|
ttgval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
6 |
1
|
a1i |
⊢ ( 𝐻 ∈ 𝑉 → 𝐺 = ( toTG ‘ 𝐻 ) ) |
7 |
|
elex |
⊢ ( 𝐻 ∈ 𝑉 → 𝐻 ∈ V ) |
8 |
|
fveq2 |
⊢ ( 𝑤 = 𝐻 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝐻 ) ) |
9 |
8 2
|
eqtr4di |
⊢ ( 𝑤 = 𝐻 → ( Base ‘ 𝑤 ) = 𝐵 ) |
10 |
|
fveq2 |
⊢ ( 𝑤 = 𝐻 → ( -g ‘ 𝑤 ) = ( -g ‘ 𝐻 ) ) |
11 |
10 3
|
eqtr4di |
⊢ ( 𝑤 = 𝐻 → ( -g ‘ 𝑤 ) = − ) |
12 |
11
|
oveqd |
⊢ ( 𝑤 = 𝐻 → ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 ) = ( 𝑧 − 𝑥 ) ) |
13 |
|
fveq2 |
⊢ ( 𝑤 = 𝐻 → ( ·𝑠 ‘ 𝑤 ) = ( ·𝑠 ‘ 𝐻 ) ) |
14 |
13 4
|
eqtr4di |
⊢ ( 𝑤 = 𝐻 → ( ·𝑠 ‘ 𝑤 ) = · ) |
15 |
|
eqidd |
⊢ ( 𝑤 = 𝐻 → 𝑘 = 𝑘 ) |
16 |
11
|
oveqd |
⊢ ( 𝑤 = 𝐻 → ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) = ( 𝑦 − 𝑥 ) ) |
17 |
14 15 16
|
oveq123d |
⊢ ( 𝑤 = 𝐻 → ( 𝑘 ( ·𝑠 ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) ) |
18 |
12 17
|
eqeq12d |
⊢ ( 𝑤 = 𝐻 → ( ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 ) = ( 𝑘 ( ·𝑠 ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) ) ↔ ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) ) ) |
19 |
18
|
rexbidv |
⊢ ( 𝑤 = 𝐻 → ( ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 ) = ( 𝑘 ( ·𝑠 ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) ) ↔ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) ) ) |
20 |
9 19
|
rabeqbidv |
⊢ ( 𝑤 = 𝐻 → { 𝑧 ∈ ( Base ‘ 𝑤 ) ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 ) = ( 𝑘 ( ·𝑠 ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) ) } = { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) |
21 |
9 9 20
|
mpoeq123dv |
⊢ ( 𝑤 = 𝐻 → ( 𝑥 ∈ ( Base ‘ 𝑤 ) , 𝑦 ∈ ( Base ‘ 𝑤 ) ↦ { 𝑧 ∈ ( Base ‘ 𝑤 ) ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 ) = ( 𝑘 ( ·𝑠 ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) ) } ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) ) |
22 |
|
oveq1 |
⊢ ( 𝑤 = 𝐻 → ( 𝑤 sSet 〈 ( Itv ‘ ndx ) , 𝑖 〉 ) = ( 𝐻 sSet 〈 ( Itv ‘ ndx ) , 𝑖 〉 ) ) |
23 |
9
|
rabeqdv |
⊢ ( 𝑤 = 𝐻 → { 𝑧 ∈ ( Base ‘ 𝑤 ) ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } = { 𝑧 ∈ 𝐵 ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) |
24 |
9 9 23
|
mpoeq123dv |
⊢ ( 𝑤 = 𝐻 → ( 𝑥 ∈ ( Base ‘ 𝑤 ) , 𝑦 ∈ ( Base ‘ 𝑤 ) ↦ { 𝑧 ∈ ( Base ‘ 𝑤 ) ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) ) |
25 |
24
|
opeq2d |
⊢ ( 𝑤 = 𝐻 → 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑤 ) , 𝑦 ∈ ( Base ‘ 𝑤 ) ↦ { 𝑧 ∈ ( Base ‘ 𝑤 ) ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) 〉 = 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) |
26 |
22 25
|
oveq12d |
⊢ ( 𝑤 = 𝐻 → ( ( 𝑤 sSet 〈 ( Itv ‘ ndx ) , 𝑖 〉 ) sSet 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑤 ) , 𝑦 ∈ ( Base ‘ 𝑤 ) ↦ { 𝑧 ∈ ( Base ‘ 𝑤 ) ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) = ( ( 𝐻 sSet 〈 ( Itv ‘ ndx ) , 𝑖 〉 ) sSet 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) ) |
27 |
21 26
|
csbeq12dv |
⊢ ( 𝑤 = 𝐻 → ⦋ ( 𝑥 ∈ ( Base ‘ 𝑤 ) , 𝑦 ∈ ( Base ‘ 𝑤 ) ↦ { 𝑧 ∈ ( Base ‘ 𝑤 ) ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 ) = ( 𝑘 ( ·𝑠 ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) ) } ) / 𝑖 ⦌ ( ( 𝑤 sSet 〈 ( Itv ‘ ndx ) , 𝑖 〉 ) sSet 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑤 ) , 𝑦 ∈ ( Base ‘ 𝑤 ) ↦ { 𝑧 ∈ ( Base ‘ 𝑤 ) ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) = ⦋ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) / 𝑖 ⦌ ( ( 𝐻 sSet 〈 ( Itv ‘ ndx ) , 𝑖 〉 ) sSet 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) ) |
28 |
|
df-ttg |
⊢ toTG = ( 𝑤 ∈ V ↦ ⦋ ( 𝑥 ∈ ( Base ‘ 𝑤 ) , 𝑦 ∈ ( Base ‘ 𝑤 ) ↦ { 𝑧 ∈ ( Base ‘ 𝑤 ) ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 ) = ( 𝑘 ( ·𝑠 ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) ) } ) / 𝑖 ⦌ ( ( 𝑤 sSet 〈 ( Itv ‘ ndx ) , 𝑖 〉 ) sSet 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑤 ) , 𝑦 ∈ ( Base ‘ 𝑤 ) ↦ { 𝑧 ∈ ( Base ‘ 𝑤 ) ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) ) |
29 |
|
ovex |
⊢ ( ( 𝐻 sSet 〈 ( Itv ‘ ndx ) , 𝑖 〉 ) sSet 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) ∈ V |
30 |
29
|
csbex |
⊢ ⦋ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) / 𝑖 ⦌ ( ( 𝐻 sSet 〈 ( Itv ‘ ndx ) , 𝑖 〉 ) sSet 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) ∈ V |
31 |
27 28 30
|
fvmpt |
⊢ ( 𝐻 ∈ V → ( toTG ‘ 𝐻 ) = ⦋ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) / 𝑖 ⦌ ( ( 𝐻 sSet 〈 ( Itv ‘ ndx ) , 𝑖 〉 ) sSet 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) ) |
32 |
7 31
|
syl |
⊢ ( 𝐻 ∈ 𝑉 → ( toTG ‘ 𝐻 ) = ⦋ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) / 𝑖 ⦌ ( ( 𝐻 sSet 〈 ( Itv ‘ ndx ) , 𝑖 〉 ) sSet 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) ) |
33 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
34 |
33 33
|
mpoex |
⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) ∈ V |
35 |
34
|
a1i |
⊢ ( 𝐻 ∈ 𝑉 → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) ∈ V ) |
36 |
|
simpr |
⊢ ( ( 𝐻 ∈ 𝑉 ∧ 𝑖 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) ) → 𝑖 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) ) |
37 |
|
oveq2 |
⊢ ( 𝑎 = 𝑥 → ( 𝑐 − 𝑎 ) = ( 𝑐 − 𝑥 ) ) |
38 |
|
oveq2 |
⊢ ( 𝑎 = 𝑥 → ( 𝑏 − 𝑎 ) = ( 𝑏 − 𝑥 ) ) |
39 |
38
|
oveq2d |
⊢ ( 𝑎 = 𝑥 → ( 𝑘 · ( 𝑏 − 𝑎 ) ) = ( 𝑘 · ( 𝑏 − 𝑥 ) ) ) |
40 |
37 39
|
eqeq12d |
⊢ ( 𝑎 = 𝑥 → ( ( 𝑐 − 𝑎 ) = ( 𝑘 · ( 𝑏 − 𝑎 ) ) ↔ ( 𝑐 − 𝑥 ) = ( 𝑘 · ( 𝑏 − 𝑥 ) ) ) ) |
41 |
40
|
rexbidv |
⊢ ( 𝑎 = 𝑥 → ( ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑐 − 𝑎 ) = ( 𝑘 · ( 𝑏 − 𝑎 ) ) ↔ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑐 − 𝑥 ) = ( 𝑘 · ( 𝑏 − 𝑥 ) ) ) ) |
42 |
41
|
rabbidv |
⊢ ( 𝑎 = 𝑥 → { 𝑐 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑐 − 𝑎 ) = ( 𝑘 · ( 𝑏 − 𝑎 ) ) } = { 𝑐 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑐 − 𝑥 ) = ( 𝑘 · ( 𝑏 − 𝑥 ) ) } ) |
43 |
|
oveq1 |
⊢ ( 𝑏 = 𝑦 → ( 𝑏 − 𝑥 ) = ( 𝑦 − 𝑥 ) ) |
44 |
43
|
oveq2d |
⊢ ( 𝑏 = 𝑦 → ( 𝑘 · ( 𝑏 − 𝑥 ) ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) ) |
45 |
44
|
eqeq2d |
⊢ ( 𝑏 = 𝑦 → ( ( 𝑐 − 𝑥 ) = ( 𝑘 · ( 𝑏 − 𝑥 ) ) ↔ ( 𝑐 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) ) ) |
46 |
45
|
rexbidv |
⊢ ( 𝑏 = 𝑦 → ( ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑐 − 𝑥 ) = ( 𝑘 · ( 𝑏 − 𝑥 ) ) ↔ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑐 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) ) ) |
47 |
46
|
rabbidv |
⊢ ( 𝑏 = 𝑦 → { 𝑐 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑐 − 𝑥 ) = ( 𝑘 · ( 𝑏 − 𝑥 ) ) } = { 𝑐 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑐 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) |
48 |
|
oveq1 |
⊢ ( 𝑐 = 𝑧 → ( 𝑐 − 𝑥 ) = ( 𝑧 − 𝑥 ) ) |
49 |
48
|
eqeq1d |
⊢ ( 𝑐 = 𝑧 → ( ( 𝑐 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) ↔ ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) ) ) |
50 |
49
|
rexbidv |
⊢ ( 𝑐 = 𝑧 → ( ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑐 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) ↔ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) ) ) |
51 |
50
|
cbvrabv |
⊢ { 𝑐 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑐 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } = { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } |
52 |
47 51
|
eqtrdi |
⊢ ( 𝑏 = 𝑦 → { 𝑐 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑐 − 𝑥 ) = ( 𝑘 · ( 𝑏 − 𝑥 ) ) } = { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) |
53 |
42 52
|
cbvmpov |
⊢ ( 𝑎 ∈ 𝐵 , 𝑏 ∈ 𝐵 ↦ { 𝑐 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑐 − 𝑎 ) = ( 𝑘 · ( 𝑏 − 𝑎 ) ) } ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) |
54 |
36 53
|
eqtr4di |
⊢ ( ( 𝐻 ∈ 𝑉 ∧ 𝑖 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) ) → 𝑖 = ( 𝑎 ∈ 𝐵 , 𝑏 ∈ 𝐵 ↦ { 𝑐 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑐 − 𝑎 ) = ( 𝑘 · ( 𝑏 − 𝑎 ) ) } ) ) |
55 |
|
simpr |
⊢ ( ( 𝐻 ∈ 𝑉 ∧ 𝑖 = ( 𝑎 ∈ 𝐵 , 𝑏 ∈ 𝐵 ↦ { 𝑐 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑐 − 𝑎 ) = ( 𝑘 · ( 𝑏 − 𝑎 ) ) } ) ) → 𝑖 = ( 𝑎 ∈ 𝐵 , 𝑏 ∈ 𝐵 ↦ { 𝑐 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑐 − 𝑎 ) = ( 𝑘 · ( 𝑏 − 𝑎 ) ) } ) ) |
56 |
55 53
|
eqtrdi |
⊢ ( ( 𝐻 ∈ 𝑉 ∧ 𝑖 = ( 𝑎 ∈ 𝐵 , 𝑏 ∈ 𝐵 ↦ { 𝑐 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑐 − 𝑎 ) = ( 𝑘 · ( 𝑏 − 𝑎 ) ) } ) ) → 𝑖 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) ) |
57 |
56
|
opeq2d |
⊢ ( ( 𝐻 ∈ 𝑉 ∧ 𝑖 = ( 𝑎 ∈ 𝐵 , 𝑏 ∈ 𝐵 ↦ { 𝑐 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑐 − 𝑎 ) = ( 𝑘 · ( 𝑏 − 𝑎 ) ) } ) ) → 〈 ( Itv ‘ ndx ) , 𝑖 〉 = 〈 ( Itv ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 〉 ) |
58 |
57
|
oveq2d |
⊢ ( ( 𝐻 ∈ 𝑉 ∧ 𝑖 = ( 𝑎 ∈ 𝐵 , 𝑏 ∈ 𝐵 ↦ { 𝑐 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑐 − 𝑎 ) = ( 𝑘 · ( 𝑏 − 𝑎 ) ) } ) ) → ( 𝐻 sSet 〈 ( Itv ‘ ndx ) , 𝑖 〉 ) = ( 𝐻 sSet 〈 ( Itv ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 〉 ) ) |
59 |
56
|
oveqd |
⊢ ( ( 𝐻 ∈ 𝑉 ∧ 𝑖 = ( 𝑎 ∈ 𝐵 , 𝑏 ∈ 𝐵 ↦ { 𝑐 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑐 − 𝑎 ) = ( 𝑘 · ( 𝑏 − 𝑎 ) ) } ) ) → ( 𝑥 𝑖 𝑦 ) = ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑦 ) ) |
60 |
59
|
eleq2d |
⊢ ( ( 𝐻 ∈ 𝑉 ∧ 𝑖 = ( 𝑎 ∈ 𝐵 , 𝑏 ∈ 𝐵 ↦ { 𝑐 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑐 − 𝑎 ) = ( 𝑘 · ( 𝑏 − 𝑎 ) ) } ) ) → ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ↔ 𝑧 ∈ ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑦 ) ) ) |
61 |
56
|
oveqd |
⊢ ( ( 𝐻 ∈ 𝑉 ∧ 𝑖 = ( 𝑎 ∈ 𝐵 , 𝑏 ∈ 𝐵 ↦ { 𝑐 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑐 − 𝑎 ) = ( 𝑘 · ( 𝑏 − 𝑎 ) ) } ) ) → ( 𝑧 𝑖 𝑦 ) = ( 𝑧 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑦 ) ) |
62 |
61
|
eleq2d |
⊢ ( ( 𝐻 ∈ 𝑉 ∧ 𝑖 = ( 𝑎 ∈ 𝐵 , 𝑏 ∈ 𝐵 ↦ { 𝑐 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑐 − 𝑎 ) = ( 𝑘 · ( 𝑏 − 𝑎 ) ) } ) ) → ( 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ↔ 𝑥 ∈ ( 𝑧 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑦 ) ) ) |
63 |
56
|
oveqd |
⊢ ( ( 𝐻 ∈ 𝑉 ∧ 𝑖 = ( 𝑎 ∈ 𝐵 , 𝑏 ∈ 𝐵 ↦ { 𝑐 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑐 − 𝑎 ) = ( 𝑘 · ( 𝑏 − 𝑎 ) ) } ) ) → ( 𝑥 𝑖 𝑧 ) = ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑧 ) ) |
64 |
63
|
eleq2d |
⊢ ( ( 𝐻 ∈ 𝑉 ∧ 𝑖 = ( 𝑎 ∈ 𝐵 , 𝑏 ∈ 𝐵 ↦ { 𝑐 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑐 − 𝑎 ) = ( 𝑘 · ( 𝑏 − 𝑎 ) ) } ) ) → ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ↔ 𝑦 ∈ ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑧 ) ) ) |
65 |
60 62 64
|
3orbi123d |
⊢ ( ( 𝐻 ∈ 𝑉 ∧ 𝑖 = ( 𝑎 ∈ 𝐵 , 𝑏 ∈ 𝐵 ↦ { 𝑐 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑐 − 𝑎 ) = ( 𝑘 · ( 𝑏 − 𝑎 ) ) } ) ) → ( ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ↔ ( 𝑧 ∈ ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑧 ) ) ) ) |
66 |
65
|
rabbidv |
⊢ ( ( 𝐻 ∈ 𝑉 ∧ 𝑖 = ( 𝑎 ∈ 𝐵 , 𝑏 ∈ 𝐵 ↦ { 𝑐 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑐 − 𝑎 ) = ( 𝑘 · ( 𝑏 − 𝑎 ) ) } ) ) → { 𝑧 ∈ 𝐵 ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } = { 𝑧 ∈ 𝐵 ∣ ( 𝑧 ∈ ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑧 ) ) } ) |
67 |
66
|
mpoeq3dv |
⊢ ( ( 𝐻 ∈ 𝑉 ∧ 𝑖 = ( 𝑎 ∈ 𝐵 , 𝑏 ∈ 𝐵 ↦ { 𝑐 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑐 − 𝑎 ) = ( 𝑘 · ( 𝑏 − 𝑎 ) ) } ) ) → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ( 𝑧 ∈ ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑧 ) ) } ) ) |
68 |
67
|
opeq2d |
⊢ ( ( 𝐻 ∈ 𝑉 ∧ 𝑖 = ( 𝑎 ∈ 𝐵 , 𝑏 ∈ 𝐵 ↦ { 𝑐 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑐 − 𝑎 ) = ( 𝑘 · ( 𝑏 − 𝑎 ) ) } ) ) → 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) 〉 = 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ( 𝑧 ∈ ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑧 ) ) } ) 〉 ) |
69 |
58 68
|
oveq12d |
⊢ ( ( 𝐻 ∈ 𝑉 ∧ 𝑖 = ( 𝑎 ∈ 𝐵 , 𝑏 ∈ 𝐵 ↦ { 𝑐 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑐 − 𝑎 ) = ( 𝑘 · ( 𝑏 − 𝑎 ) ) } ) ) → ( ( 𝐻 sSet 〈 ( Itv ‘ ndx ) , 𝑖 〉 ) sSet 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) = ( ( 𝐻 sSet 〈 ( Itv ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 〉 ) sSet 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ( 𝑧 ∈ ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑧 ) ) } ) 〉 ) ) |
70 |
54 69
|
syldan |
⊢ ( ( 𝐻 ∈ 𝑉 ∧ 𝑖 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) ) → ( ( 𝐻 sSet 〈 ( Itv ‘ ndx ) , 𝑖 〉 ) sSet 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) = ( ( 𝐻 sSet 〈 ( Itv ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 〉 ) sSet 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ( 𝑧 ∈ ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑧 ) ) } ) 〉 ) ) |
71 |
35 70
|
csbied |
⊢ ( 𝐻 ∈ 𝑉 → ⦋ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) / 𝑖 ⦌ ( ( 𝐻 sSet 〈 ( Itv ‘ ndx ) , 𝑖 〉 ) sSet 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) = ( ( 𝐻 sSet 〈 ( Itv ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 〉 ) sSet 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ( 𝑧 ∈ ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑧 ) ) } ) 〉 ) ) |
72 |
6 32 71
|
3eqtrd |
⊢ ( 𝐻 ∈ 𝑉 → 𝐺 = ( ( 𝐻 sSet 〈 ( Itv ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 〉 ) sSet 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ( 𝑧 ∈ ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑧 ) ) } ) 〉 ) ) |
73 |
72
|
fveq2d |
⊢ ( 𝐻 ∈ 𝑉 → ( Itv ‘ 𝐺 ) = ( Itv ‘ ( ( 𝐻 sSet 〈 ( Itv ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 〉 ) sSet 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ( 𝑧 ∈ ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑧 ) ) } ) 〉 ) ) ) |
74 |
|
itvid |
⊢ Itv = Slot ( Itv ‘ ndx ) |
75 |
|
lngndxnitvndx |
⊢ ( LineG ‘ ndx ) ≠ ( Itv ‘ ndx ) |
76 |
75
|
necomi |
⊢ ( Itv ‘ ndx ) ≠ ( LineG ‘ ndx ) |
77 |
74 76
|
setsnid |
⊢ ( Itv ‘ ( 𝐻 sSet 〈 ( Itv ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 〉 ) ) = ( Itv ‘ ( ( 𝐻 sSet 〈 ( Itv ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 〉 ) sSet 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ( 𝑧 ∈ ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑧 ) ) } ) 〉 ) ) |
78 |
73 77
|
eqtr4di |
⊢ ( 𝐻 ∈ 𝑉 → ( Itv ‘ 𝐺 ) = ( Itv ‘ ( 𝐻 sSet 〈 ( Itv ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 〉 ) ) ) |
79 |
5
|
a1i |
⊢ ( 𝐻 ∈ 𝑉 → 𝐼 = ( Itv ‘ 𝐺 ) ) |
80 |
74
|
setsid |
⊢ ( ( 𝐻 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) ∈ V ) → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) = ( Itv ‘ ( 𝐻 sSet 〈 ( Itv ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 〉 ) ) ) |
81 |
34 80
|
mpan2 |
⊢ ( 𝐻 ∈ 𝑉 → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) = ( Itv ‘ ( 𝐻 sSet 〈 ( Itv ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 〉 ) ) ) |
82 |
78 79 81
|
3eqtr4d |
⊢ ( 𝐻 ∈ 𝑉 → 𝐼 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) ) |
83 |
82
|
oveqd |
⊢ ( 𝐻 ∈ 𝑉 → ( 𝑥 𝐼 𝑦 ) = ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑦 ) ) |
84 |
83
|
eleq2d |
⊢ ( 𝐻 ∈ 𝑉 → ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ↔ 𝑧 ∈ ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑦 ) ) ) |
85 |
82
|
oveqd |
⊢ ( 𝐻 ∈ 𝑉 → ( 𝑧 𝐼 𝑦 ) = ( 𝑧 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑦 ) ) |
86 |
85
|
eleq2d |
⊢ ( 𝐻 ∈ 𝑉 → ( 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ↔ 𝑥 ∈ ( 𝑧 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑦 ) ) ) |
87 |
82
|
oveqd |
⊢ ( 𝐻 ∈ 𝑉 → ( 𝑥 𝐼 𝑧 ) = ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑧 ) ) |
88 |
87
|
eleq2d |
⊢ ( 𝐻 ∈ 𝑉 → ( 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ↔ 𝑦 ∈ ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑧 ) ) ) |
89 |
84 86 88
|
3orbi123d |
⊢ ( 𝐻 ∈ 𝑉 → ( ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ↔ ( 𝑧 ∈ ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑧 ) ) ) ) |
90 |
89
|
rabbidv |
⊢ ( 𝐻 ∈ 𝑉 → { 𝑧 ∈ 𝐵 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } = { 𝑧 ∈ 𝐵 ∣ ( 𝑧 ∈ ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑧 ) ) } ) |
91 |
90
|
mpoeq3dv |
⊢ ( 𝐻 ∈ 𝑉 → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ( 𝑧 ∈ ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑧 ) ) } ) ) |
92 |
91
|
opeq2d |
⊢ ( 𝐻 ∈ 𝑉 → 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ) 〉 = 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ( 𝑧 ∈ ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑧 ) ) } ) 〉 ) |
93 |
92
|
oveq2d |
⊢ ( 𝐻 ∈ 𝑉 → ( ( 𝐻 sSet 〈 ( Itv ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 〉 ) sSet 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ) 〉 ) = ( ( 𝐻 sSet 〈 ( Itv ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 〉 ) sSet 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ( 𝑧 ∈ ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 𝑧 ) ) } ) 〉 ) ) |
94 |
72 93
|
eqtr4d |
⊢ ( 𝐻 ∈ 𝑉 → 𝐺 = ( ( 𝐻 sSet 〈 ( Itv ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 〉 ) sSet 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ) 〉 ) ) |
95 |
94 82
|
jca |
⊢ ( 𝐻 ∈ 𝑉 → ( 𝐺 = ( ( 𝐻 sSet 〈 ( Itv ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) 〉 ) sSet 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ) 〉 ) ∧ 𝐼 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 − 𝑥 ) = ( 𝑘 · ( 𝑦 − 𝑥 ) ) } ) ) ) |