| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ttgval.n | 
							⊢ 𝐺  =  ( toTG ‘ 𝐻 )  | 
						
						
							| 2 | 
							
								
							 | 
							ttgval.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐻 )  | 
						
						
							| 3 | 
							
								
							 | 
							ttgval.m | 
							⊢  −   =  ( -g ‘ 𝐻 )  | 
						
						
							| 4 | 
							
								
							 | 
							ttgval.s | 
							⊢  ·   =  (  ·𝑠  ‘ 𝐻 )  | 
						
						
							| 5 | 
							
								
							 | 
							ttgval.i | 
							⊢ 𝐼  =  ( Itv ‘ 𝐺 )  | 
						
						
							| 6 | 
							
								1
							 | 
							a1i | 
							⊢ ( 𝐻  ∈  𝑉  →  𝐺  =  ( toTG ‘ 𝐻 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							elex | 
							⊢ ( 𝐻  ∈  𝑉  →  𝐻  ∈  V )  | 
						
						
							| 8 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑤  =  𝐻  →  ( Base ‘ 𝑤 )  =  ( Base ‘ 𝐻 ) )  | 
						
						
							| 9 | 
							
								8 2
							 | 
							eqtr4di | 
							⊢ ( 𝑤  =  𝐻  →  ( Base ‘ 𝑤 )  =  𝐵 )  | 
						
						
							| 10 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑤  =  𝐻  →  ( -g ‘ 𝑤 )  =  ( -g ‘ 𝐻 ) )  | 
						
						
							| 11 | 
							
								10 3
							 | 
							eqtr4di | 
							⊢ ( 𝑤  =  𝐻  →  ( -g ‘ 𝑤 )  =   −  )  | 
						
						
							| 12 | 
							
								11
							 | 
							oveqd | 
							⊢ ( 𝑤  =  𝐻  →  ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 )  =  ( 𝑧  −  𝑥 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑤  =  𝐻  →  (  ·𝑠  ‘ 𝑤 )  =  (  ·𝑠  ‘ 𝐻 ) )  | 
						
						
							| 14 | 
							
								13 4
							 | 
							eqtr4di | 
							⊢ ( 𝑤  =  𝐻  →  (  ·𝑠  ‘ 𝑤 )  =   ·  )  | 
						
						
							| 15 | 
							
								
							 | 
							eqidd | 
							⊢ ( 𝑤  =  𝐻  →  𝑘  =  𝑘 )  | 
						
						
							| 16 | 
							
								11
							 | 
							oveqd | 
							⊢ ( 𝑤  =  𝐻  →  ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 )  =  ( 𝑦  −  𝑥 ) )  | 
						
						
							| 17 | 
							
								14 15 16
							 | 
							oveq123d | 
							⊢ ( 𝑤  =  𝐻  →  ( 𝑘 (  ·𝑠  ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) )  | 
						
						
							| 18 | 
							
								12 17
							 | 
							eqeq12d | 
							⊢ ( 𝑤  =  𝐻  →  ( ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) )  ↔  ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							rexbidv | 
							⊢ ( 𝑤  =  𝐻  →  ( ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) )  ↔  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) ) )  | 
						
						
							| 20 | 
							
								9 19
							 | 
							rabeqbidv | 
							⊢ ( 𝑤  =  𝐻  →  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) ) }  =  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } )  | 
						
						
							| 21 | 
							
								9 9 20
							 | 
							mpoeq123dv | 
							⊢ ( 𝑤  =  𝐻  →  ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) ) } )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							csbeq1d | 
							⊢ ( 𝑤  =  𝐻  →  ⦋ ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) ) } )  /  𝑖 ⦌ ( ( 𝑤  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 )  =  ⦋ ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } )  /  𝑖 ⦌ ( ( 𝑤  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑤  =  𝐻  →  ( 𝑤  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  =  ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 ) )  | 
						
						
							| 24 | 
							
								9
							 | 
							rabeqdv | 
							⊢ ( 𝑤  =  𝐻  →  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) }  =  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } )  | 
						
						
							| 25 | 
							
								9 9 24
							 | 
							mpoeq123dv | 
							⊢ ( 𝑤  =  𝐻  →  ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							opeq2d | 
							⊢ ( 𝑤  =  𝐻  →  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉  =  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 )  | 
						
						
							| 27 | 
							
								23 26
							 | 
							oveq12d | 
							⊢ ( 𝑤  =  𝐻  →  ( ( 𝑤  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 )  =  ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							csbeq2dv | 
							⊢ ( 𝑤  =  𝐻  →  ⦋ ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } )  /  𝑖 ⦌ ( ( 𝑤  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 )  =  ⦋ ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } )  /  𝑖 ⦌ ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) )  | 
						
						
							| 29 | 
							
								22 28
							 | 
							eqtrd | 
							⊢ ( 𝑤  =  𝐻  →  ⦋ ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) ) } )  /  𝑖 ⦌ ( ( 𝑤  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 )  =  ⦋ ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } )  /  𝑖 ⦌ ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) )  | 
						
						
							| 30 | 
							
								
							 | 
							df-ttg | 
							⊢ toTG  =  ( 𝑤  ∈  V  ↦  ⦋ ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) ) } )  /  𝑖 ⦌ ( ( 𝑤  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) )  | 
						
						
							| 31 | 
							
								
							 | 
							ovex | 
							⊢ ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 )  ∈  V  | 
						
						
							| 32 | 
							
								31
							 | 
							csbex | 
							⊢ ⦋ ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } )  /  𝑖 ⦌ ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 )  ∈  V  | 
						
						
							| 33 | 
							
								29 30 32
							 | 
							fvmpt | 
							⊢ ( 𝐻  ∈  V  →  ( toTG ‘ 𝐻 )  =  ⦋ ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } )  /  𝑖 ⦌ ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) )  | 
						
						
							| 34 | 
							
								7 33
							 | 
							syl | 
							⊢ ( 𝐻  ∈  𝑉  →  ( toTG ‘ 𝐻 )  =  ⦋ ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } )  /  𝑖 ⦌ ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) )  | 
						
						
							| 35 | 
							
								2
							 | 
							fvexi | 
							⊢ 𝐵  ∈  V  | 
						
						
							| 36 | 
							
								35 35
							 | 
							mpoex | 
							⊢ ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } )  ∈  V  | 
						
						
							| 37 | 
							
								36
							 | 
							a1i | 
							⊢ ( 𝐻  ∈  𝑉  →  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } )  ∈  V )  | 
						
						
							| 38 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) )  →  𝑖  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) )  | 
						
						
							| 39 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑎  =  𝑥  →  ( 𝑐  −  𝑎 )  =  ( 𝑐  −  𝑥 ) )  | 
						
						
							| 40 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑎  =  𝑥  →  ( 𝑏  −  𝑎 )  =  ( 𝑏  −  𝑥 ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							oveq2d | 
							⊢ ( 𝑎  =  𝑥  →  ( 𝑘  ·  ( 𝑏  −  𝑎 ) )  =  ( 𝑘  ·  ( 𝑏  −  𝑥 ) ) )  | 
						
						
							| 42 | 
							
								39 41
							 | 
							eqeq12d | 
							⊢ ( 𝑎  =  𝑥  →  ( ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) )  ↔  ( 𝑐  −  𝑥 )  =  ( 𝑘  ·  ( 𝑏  −  𝑥 ) ) ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							rexbidv | 
							⊢ ( 𝑎  =  𝑥  →  ( ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) )  ↔  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑥 )  =  ( 𝑘  ·  ( 𝑏  −  𝑥 ) ) ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							rabbidv | 
							⊢ ( 𝑎  =  𝑥  →  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) }  =  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑥 )  =  ( 𝑘  ·  ( 𝑏  −  𝑥 ) ) } )  | 
						
						
							| 45 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑏  =  𝑦  →  ( 𝑏  −  𝑥 )  =  ( 𝑦  −  𝑥 ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							oveq2d | 
							⊢ ( 𝑏  =  𝑦  →  ( 𝑘  ·  ( 𝑏  −  𝑥 ) )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							eqeq2d | 
							⊢ ( 𝑏  =  𝑦  →  ( ( 𝑐  −  𝑥 )  =  ( 𝑘  ·  ( 𝑏  −  𝑥 ) )  ↔  ( 𝑐  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							rexbidv | 
							⊢ ( 𝑏  =  𝑦  →  ( ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑥 )  =  ( 𝑘  ·  ( 𝑏  −  𝑥 ) )  ↔  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							rabbidv | 
							⊢ ( 𝑏  =  𝑦  →  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑥 )  =  ( 𝑘  ·  ( 𝑏  −  𝑥 ) ) }  =  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } )  | 
						
						
							| 50 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑐  =  𝑧  →  ( 𝑐  −  𝑥 )  =  ( 𝑧  −  𝑥 ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							eqeq1d | 
							⊢ ( 𝑐  =  𝑧  →  ( ( 𝑐  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) )  ↔  ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							rexbidv | 
							⊢ ( 𝑐  =  𝑧  →  ( ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) )  ↔  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							cbvrabv | 
							⊢ { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) }  =  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) }  | 
						
						
							| 54 | 
							
								49 53
							 | 
							eqtrdi | 
							⊢ ( 𝑏  =  𝑦  →  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑥 )  =  ( 𝑘  ·  ( 𝑏  −  𝑥 ) ) }  =  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } )  | 
						
						
							| 55 | 
							
								44 54
							 | 
							cbvmpov | 
							⊢ ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } )  | 
						
						
							| 56 | 
							
								38 55
							 | 
							eqtr4di | 
							⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) )  →  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  | 
						
						
							| 57 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  | 
						
						
							| 58 | 
							
								57 55
							 | 
							eqtrdi | 
							⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  𝑖  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) )  | 
						
						
							| 59 | 
							
								58
							 | 
							opeq2d | 
							⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  〈 ( Itv ‘ ndx ) ,  𝑖 〉  =  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 )  | 
						
						
							| 60 | 
							
								59
							 | 
							oveq2d | 
							⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  =  ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 ) )  | 
						
						
							| 61 | 
							
								58
							 | 
							oveqd | 
							⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  ( 𝑥 𝑖 𝑦 )  =  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 ) )  | 
						
						
							| 62 | 
							
								61
							 | 
							eleq2d | 
							⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ↔  𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 ) ) )  | 
						
						
							| 63 | 
							
								58
							 | 
							oveqd | 
							⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  ( 𝑧 𝑖 𝑦 )  =  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 ) )  | 
						
						
							| 64 | 
							
								63
							 | 
							eleq2d | 
							⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  ( 𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ↔  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 ) ) )  | 
						
						
							| 65 | 
							
								58
							 | 
							oveqd | 
							⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  ( 𝑥 𝑖 𝑧 )  =  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) )  | 
						
						
							| 66 | 
							
								65
							 | 
							eleq2d | 
							⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  ( 𝑦  ∈  ( 𝑥 𝑖 𝑧 )  ↔  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) )  | 
						
						
							| 67 | 
							
								62 64 66
							 | 
							3orbi123d | 
							⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  ( ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) )  ↔  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) ) )  | 
						
						
							| 68 | 
							
								67
							 | 
							rabbidv | 
							⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) }  =  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) } )  | 
						
						
							| 69 | 
							
								68
							 | 
							mpoeq3dv | 
							⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) } ) )  | 
						
						
							| 70 | 
							
								69
							 | 
							opeq2d | 
							⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉  =  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) } ) 〉 )  | 
						
						
							| 71 | 
							
								60 70
							 | 
							oveq12d | 
							⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 )  =  ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) } ) 〉 ) )  | 
						
						
							| 72 | 
							
								56 71
							 | 
							syldan | 
							⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) )  →  ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 )  =  ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) } ) 〉 ) )  | 
						
						
							| 73 | 
							
								37 72
							 | 
							csbied | 
							⊢ ( 𝐻  ∈  𝑉  →  ⦋ ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } )  /  𝑖 ⦌ ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 )  =  ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) } ) 〉 ) )  | 
						
						
							| 74 | 
							
								6 34 73
							 | 
							3eqtrd | 
							⊢ ( 𝐻  ∈  𝑉  →  𝐺  =  ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) } ) 〉 ) )  | 
						
						
							| 75 | 
							
								74
							 | 
							fveq2d | 
							⊢ ( 𝐻  ∈  𝑉  →  ( Itv ‘ 𝐺 )  =  ( Itv ‘ ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) } ) 〉 ) ) )  | 
						
						
							| 76 | 
							
								
							 | 
							itvid | 
							⊢ Itv  =  Slot  ( Itv ‘ ndx )  | 
						
						
							| 77 | 
							
								
							 | 
							1nn0 | 
							⊢ 1  ∈  ℕ0  | 
						
						
							| 78 | 
							
								
							 | 
							6nn | 
							⊢ 6  ∈  ℕ  | 
						
						
							| 79 | 
							
								77 78
							 | 
							decnncl | 
							⊢ ; 1 6  ∈  ℕ  | 
						
						
							| 80 | 
							
								79
							 | 
							nnrei | 
							⊢ ; 1 6  ∈  ℝ  | 
						
						
							| 81 | 
							
								
							 | 
							6nn0 | 
							⊢ 6  ∈  ℕ0  | 
						
						
							| 82 | 
							
								
							 | 
							7nn | 
							⊢ 7  ∈  ℕ  | 
						
						
							| 83 | 
							
								
							 | 
							6lt7 | 
							⊢ 6  <  7  | 
						
						
							| 84 | 
							
								77 81 82 83
							 | 
							declt | 
							⊢ ; 1 6  <  ; 1 7  | 
						
						
							| 85 | 
							
								80 84
							 | 
							ltneii | 
							⊢ ; 1 6  ≠  ; 1 7  | 
						
						
							| 86 | 
							
								
							 | 
							itvndx | 
							⊢ ( Itv ‘ ndx )  =  ; 1 6  | 
						
						
							| 87 | 
							
								
							 | 
							lngndx | 
							⊢ ( LineG ‘ ndx )  =  ; 1 7  | 
						
						
							| 88 | 
							
								86 87
							 | 
							neeq12i | 
							⊢ ( ( Itv ‘ ndx )  ≠  ( LineG ‘ ndx )  ↔  ; 1 6  ≠  ; 1 7 )  | 
						
						
							| 89 | 
							
								85 88
							 | 
							mpbir | 
							⊢ ( Itv ‘ ndx )  ≠  ( LineG ‘ ndx )  | 
						
						
							| 90 | 
							
								76 89
							 | 
							setsnid | 
							⊢ ( Itv ‘ ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 ) )  =  ( Itv ‘ ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) } ) 〉 ) )  | 
						
						
							| 91 | 
							
								75 90
							 | 
							eqtr4di | 
							⊢ ( 𝐻  ∈  𝑉  →  ( Itv ‘ 𝐺 )  =  ( Itv ‘ ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 ) ) )  | 
						
						
							| 92 | 
							
								5
							 | 
							a1i | 
							⊢ ( 𝐻  ∈  𝑉  →  𝐼  =  ( Itv ‘ 𝐺 ) )  | 
						
						
							| 93 | 
							
								76
							 | 
							setsid | 
							⊢ ( ( 𝐻  ∈  𝑉  ∧  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } )  ∈  V )  →  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } )  =  ( Itv ‘ ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 ) ) )  | 
						
						
							| 94 | 
							
								36 93
							 | 
							mpan2 | 
							⊢ ( 𝐻  ∈  𝑉  →  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } )  =  ( Itv ‘ ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 ) ) )  | 
						
						
							| 95 | 
							
								91 92 94
							 | 
							3eqtr4d | 
							⊢ ( 𝐻  ∈  𝑉  →  𝐼  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) )  | 
						
						
							| 96 | 
							
								95
							 | 
							oveqd | 
							⊢ ( 𝐻  ∈  𝑉  →  ( 𝑥 𝐼 𝑦 )  =  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 ) )  | 
						
						
							| 97 | 
							
								96
							 | 
							eleq2d | 
							⊢ ( 𝐻  ∈  𝑉  →  ( 𝑧  ∈  ( 𝑥 𝐼 𝑦 )  ↔  𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 ) ) )  | 
						
						
							| 98 | 
							
								95
							 | 
							oveqd | 
							⊢ ( 𝐻  ∈  𝑉  →  ( 𝑧 𝐼 𝑦 )  =  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 ) )  | 
						
						
							| 99 | 
							
								98
							 | 
							eleq2d | 
							⊢ ( 𝐻  ∈  𝑉  →  ( 𝑥  ∈  ( 𝑧 𝐼 𝑦 )  ↔  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 ) ) )  | 
						
						
							| 100 | 
							
								95
							 | 
							oveqd | 
							⊢ ( 𝐻  ∈  𝑉  →  ( 𝑥 𝐼 𝑧 )  =  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) )  | 
						
						
							| 101 | 
							
								100
							 | 
							eleq2d | 
							⊢ ( 𝐻  ∈  𝑉  →  ( 𝑦  ∈  ( 𝑥 𝐼 𝑧 )  ↔  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) )  | 
						
						
							| 102 | 
							
								97 99 101
							 | 
							3orbi123d | 
							⊢ ( 𝐻  ∈  𝑉  →  ( ( 𝑧  ∈  ( 𝑥 𝐼 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝐼 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝐼 𝑧 ) )  ↔  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) ) )  | 
						
						
							| 103 | 
							
								102
							 | 
							rabbidv | 
							⊢ ( 𝐻  ∈  𝑉  →  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝐼 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝐼 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝐼 𝑧 ) ) }  =  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) } )  | 
						
						
							| 104 | 
							
								103
							 | 
							mpoeq3dv | 
							⊢ ( 𝐻  ∈  𝑉  →  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝐼 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝐼 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝐼 𝑧 ) ) } )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) } ) )  | 
						
						
							| 105 | 
							
								104
							 | 
							opeq2d | 
							⊢ ( 𝐻  ∈  𝑉  →  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝐼 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝐼 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝐼 𝑧 ) ) } ) 〉  =  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) } ) 〉 )  | 
						
						
							| 106 | 
							
								105
							 | 
							oveq2d | 
							⊢ ( 𝐻  ∈  𝑉  →  ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝐼 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝐼 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝐼 𝑧 ) ) } ) 〉 )  =  ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) } ) 〉 ) )  | 
						
						
							| 107 | 
							
								74 106
							 | 
							eqtr4d | 
							⊢ ( 𝐻  ∈  𝑉  →  𝐺  =  ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝐼 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝐼 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝐼 𝑧 ) ) } ) 〉 ) )  | 
						
						
							| 108 | 
							
								107 95
							 | 
							jca | 
							⊢ ( 𝐻  ∈  𝑉  →  ( 𝐺  =  ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝐼 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝐼 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝐼 𝑧 ) ) } ) 〉 )  ∧  𝐼  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) ) )  |