| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relres | ⊢ Rel  ( 𝑅  ↾  V ) | 
						
							| 2 |  | ssttrcl | ⊢ ( Rel  ( 𝑅  ↾  V )  →  ( 𝑅  ↾  V )  ⊆  t++ ( 𝑅  ↾  V ) ) | 
						
							| 3 |  | coss2 | ⊢ ( ( 𝑅  ↾  V )  ⊆  t++ ( 𝑅  ↾  V )  →  ( t++ ( 𝑅  ↾  V )  ∘  ( 𝑅  ↾  V ) )  ⊆  ( t++ ( 𝑅  ↾  V )  ∘  t++ ( 𝑅  ↾  V ) ) ) | 
						
							| 4 | 1 2 3 | mp2b | ⊢ ( t++ ( 𝑅  ↾  V )  ∘  ( 𝑅  ↾  V ) )  ⊆  ( t++ ( 𝑅  ↾  V )  ∘  t++ ( 𝑅  ↾  V ) ) | 
						
							| 5 |  | ttrcltr | ⊢ ( t++ ( 𝑅  ↾  V )  ∘  t++ ( 𝑅  ↾  V ) )  ⊆  t++ ( 𝑅  ↾  V ) | 
						
							| 6 | 4 5 | sstri | ⊢ ( t++ ( 𝑅  ↾  V )  ∘  ( 𝑅  ↾  V ) )  ⊆  t++ ( 𝑅  ↾  V ) | 
						
							| 7 |  | relco | ⊢ Rel  ( t++ ( 𝑅  ↾  V )  ∘  𝑅 ) | 
						
							| 8 |  | dfrel3 | ⊢ ( Rel  ( t++ ( 𝑅  ↾  V )  ∘  𝑅 )  ↔  ( ( t++ ( 𝑅  ↾  V )  ∘  𝑅 )  ↾  V )  =  ( t++ ( 𝑅  ↾  V )  ∘  𝑅 ) ) | 
						
							| 9 | 7 8 | mpbi | ⊢ ( ( t++ ( 𝑅  ↾  V )  ∘  𝑅 )  ↾  V )  =  ( t++ ( 𝑅  ↾  V )  ∘  𝑅 ) | 
						
							| 10 |  | resco | ⊢ ( ( t++ ( 𝑅  ↾  V )  ∘  𝑅 )  ↾  V )  =  ( t++ ( 𝑅  ↾  V )  ∘  ( 𝑅  ↾  V ) ) | 
						
							| 11 |  | ttrclresv | ⊢ t++ ( 𝑅  ↾  V )  =  t++ 𝑅 | 
						
							| 12 | 11 | coeq1i | ⊢ ( t++ ( 𝑅  ↾  V )  ∘  𝑅 )  =  ( t++ 𝑅  ∘  𝑅 ) | 
						
							| 13 | 9 10 12 | 3eqtr3i | ⊢ ( t++ ( 𝑅  ↾  V )  ∘  ( 𝑅  ↾  V ) )  =  ( t++ 𝑅  ∘  𝑅 ) | 
						
							| 14 | 6 13 11 | 3sstr3i | ⊢ ( t++ 𝑅  ∘  𝑅 )  ⊆  t++ 𝑅 |