| Step | Hyp | Ref | Expression | 
						
							| 1 |  | breq | ⊢ ( 𝑅  =  𝑆  →  ( ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc  𝑚 )  ↔  ( 𝑓 ‘ 𝑚 ) 𝑆 ( 𝑓 ‘ suc  𝑚 ) ) ) | 
						
							| 2 | 1 | ralbidv | ⊢ ( 𝑅  =  𝑆  →  ( ∀ 𝑚  ∈  𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc  𝑚 )  ↔  ∀ 𝑚  ∈  𝑛 ( 𝑓 ‘ 𝑚 ) 𝑆 ( 𝑓 ‘ suc  𝑚 ) ) ) | 
						
							| 3 | 2 | 3anbi3d | ⊢ ( 𝑅  =  𝑆  →  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑚  ∈  𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc  𝑚 ) )  ↔  ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑚  ∈  𝑛 ( 𝑓 ‘ 𝑚 ) 𝑆 ( 𝑓 ‘ suc  𝑚 ) ) ) ) | 
						
							| 4 | 3 | exbidv | ⊢ ( 𝑅  =  𝑆  →  ( ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑚  ∈  𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc  𝑚 ) )  ↔  ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑚  ∈  𝑛 ( 𝑓 ‘ 𝑚 ) 𝑆 ( 𝑓 ‘ suc  𝑚 ) ) ) ) | 
						
							| 5 | 4 | rexbidv | ⊢ ( 𝑅  =  𝑆  →  ( ∃ 𝑛  ∈  ( ω  ∖  1o ) ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑚  ∈  𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc  𝑚 ) )  ↔  ∃ 𝑛  ∈  ( ω  ∖  1o ) ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑚  ∈  𝑛 ( 𝑓 ‘ 𝑚 ) 𝑆 ( 𝑓 ‘ suc  𝑚 ) ) ) ) | 
						
							| 6 | 5 | opabbidv | ⊢ ( 𝑅  =  𝑆  →  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑛  ∈  ( ω  ∖  1o ) ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑚  ∈  𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc  𝑚 ) ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑛  ∈  ( ω  ∖  1o ) ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑚  ∈  𝑛 ( 𝑓 ‘ 𝑚 ) 𝑆 ( 𝑓 ‘ suc  𝑚 ) ) } ) | 
						
							| 7 |  | df-ttrcl | ⊢ t++ 𝑅  =  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑛  ∈  ( ω  ∖  1o ) ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑚  ∈  𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc  𝑚 ) ) } | 
						
							| 8 |  | df-ttrcl | ⊢ t++ 𝑆  =  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑛  ∈  ( ω  ∖  1o ) ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑦 )  ∧  ∀ 𝑚  ∈  𝑛 ( 𝑓 ‘ 𝑚 ) 𝑆 ( 𝑓 ‘ suc  𝑚 ) ) } | 
						
							| 9 | 6 7 8 | 3eqtr4g | ⊢ ( 𝑅  =  𝑆  →  t++ 𝑅  =  t++ 𝑆 ) |