| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dmexg | ⊢ ( 𝑅  ∈  𝑉  →  dom  𝑅  ∈  V ) | 
						
							| 2 |  | rnexg | ⊢ ( 𝑅  ∈  𝑉  →  ran  𝑅  ∈  V ) | 
						
							| 3 | 1 2 | xpexd | ⊢ ( 𝑅  ∈  𝑉  →  ( dom  𝑅  ×  ran  𝑅 )  ∈  V ) | 
						
							| 4 |  | relttrcl | ⊢ Rel  t++ 𝑅 | 
						
							| 5 |  | relssdmrn | ⊢ ( Rel  t++ 𝑅  →  t++ 𝑅  ⊆  ( dom  t++ 𝑅  ×  ran  t++ 𝑅 ) ) | 
						
							| 6 | 4 5 | ax-mp | ⊢ t++ 𝑅  ⊆  ( dom  t++ 𝑅  ×  ran  t++ 𝑅 ) | 
						
							| 7 |  | dmttrcl | ⊢ dom  t++ 𝑅  =  dom  𝑅 | 
						
							| 8 |  | rnttrcl | ⊢ ran  t++ 𝑅  =  ran  𝑅 | 
						
							| 9 | 7 8 | xpeq12i | ⊢ ( dom  t++ 𝑅  ×  ran  t++ 𝑅 )  =  ( dom  𝑅  ×  ran  𝑅 ) | 
						
							| 10 | 6 9 | sseqtri | ⊢ t++ 𝑅  ⊆  ( dom  𝑅  ×  ran  𝑅 ) | 
						
							| 11 | 10 | a1i | ⊢ ( 𝑅  ∈  𝑉  →  t++ 𝑅  ⊆  ( dom  𝑅  ×  ran  𝑅 ) ) | 
						
							| 12 | 3 11 | ssexd | ⊢ ( 𝑅  ∈  𝑉  →  t++ 𝑅  ∈  V ) |