| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ttrclselem.1 | ⊢ 𝐹  =  rec ( ( 𝑏  ∈  V  ↦  ∪  𝑤  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) ,  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) ) | 
						
							| 2 |  | suceq | ⊢ ( 𝑚  =  ∅  →  suc  𝑚  =  suc  ∅ ) | 
						
							| 3 |  | df-1o | ⊢ 1o  =  suc  ∅ | 
						
							| 4 | 2 3 | eqtr4di | ⊢ ( 𝑚  =  ∅  →  suc  𝑚  =  1o ) | 
						
							| 5 |  | suceq | ⊢ ( suc  𝑚  =  1o  →  suc  suc  𝑚  =  suc  1o ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝑚  =  ∅  →  suc  suc  𝑚  =  suc  1o ) | 
						
							| 7 | 6 | fneq2d | ⊢ ( 𝑚  =  ∅  →  ( 𝑓  Fn  suc  suc  𝑚  ↔  𝑓  Fn  suc  1o ) ) | 
						
							| 8 | 4 | fveqeq2d | ⊢ ( 𝑚  =  ∅  →  ( ( 𝑓 ‘ suc  𝑚 )  =  𝑋  ↔  ( 𝑓 ‘ 1o )  =  𝑋 ) ) | 
						
							| 9 | 8 | anbi2d | ⊢ ( 𝑚  =  ∅  →  ( ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  𝑚 )  =  𝑋 )  ↔  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ 1o )  =  𝑋 ) ) ) | 
						
							| 10 |  | df1o2 | ⊢ 1o  =  { ∅ } | 
						
							| 11 | 4 10 | eqtrdi | ⊢ ( 𝑚  =  ∅  →  suc  𝑚  =  { ∅ } ) | 
						
							| 12 | 11 | raleqdv | ⊢ ( 𝑚  =  ∅  →  ( ∀ 𝑎  ∈  suc  𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 )  ↔  ∀ 𝑎  ∈  { ∅ } ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) ) ) | 
						
							| 13 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 14 |  | fveq2 | ⊢ ( 𝑎  =  ∅  →  ( 𝑓 ‘ 𝑎 )  =  ( 𝑓 ‘ ∅ ) ) | 
						
							| 15 |  | suceq | ⊢ ( 𝑎  =  ∅  →  suc  𝑎  =  suc  ∅ ) | 
						
							| 16 | 15 3 | eqtr4di | ⊢ ( 𝑎  =  ∅  →  suc  𝑎  =  1o ) | 
						
							| 17 | 16 | fveq2d | ⊢ ( 𝑎  =  ∅  →  ( 𝑓 ‘ suc  𝑎 )  =  ( 𝑓 ‘ 1o ) ) | 
						
							| 18 | 14 17 | breq12d | ⊢ ( 𝑎  =  ∅  →  ( ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 )  ↔  ( 𝑓 ‘ ∅ ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ 1o ) ) ) | 
						
							| 19 | 13 18 | ralsn | ⊢ ( ∀ 𝑎  ∈  { ∅ } ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 )  ↔  ( 𝑓 ‘ ∅ ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ 1o ) ) | 
						
							| 20 | 12 19 | bitrdi | ⊢ ( 𝑚  =  ∅  →  ( ∀ 𝑎  ∈  suc  𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 )  ↔  ( 𝑓 ‘ ∅ ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ 1o ) ) ) | 
						
							| 21 | 7 9 20 | 3anbi123d | ⊢ ( 𝑚  =  ∅  →  ( ( 𝑓  Fn  suc  suc  𝑚  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  𝑚 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  ( 𝑓  Fn  suc  1o  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ 1o )  =  𝑋 )  ∧  ( 𝑓 ‘ ∅ ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ 1o ) ) ) ) | 
						
							| 22 | 21 | exbidv | ⊢ ( 𝑚  =  ∅  →  ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  𝑚  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  𝑚 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  ∃ 𝑓 ( 𝑓  Fn  suc  1o  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ 1o )  =  𝑋 )  ∧  ( 𝑓 ‘ ∅ ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ 1o ) ) ) ) | 
						
							| 23 |  | fveq2 | ⊢ ( 𝑚  =  ∅  →  ( 𝐹 ‘ 𝑚 )  =  ( 𝐹 ‘ ∅ ) ) | 
						
							| 24 | 23 | eleq2d | ⊢ ( 𝑚  =  ∅  →  ( 𝑦  ∈  ( 𝐹 ‘ 𝑚 )  ↔  𝑦  ∈  ( 𝐹 ‘ ∅ ) ) ) | 
						
							| 25 | 22 24 | bibi12d | ⊢ ( 𝑚  =  ∅  →  ( ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  𝑚  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  𝑚 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  𝑦  ∈  ( 𝐹 ‘ 𝑚 ) )  ↔  ( ∃ 𝑓 ( 𝑓  Fn  suc  1o  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ 1o )  =  𝑋 )  ∧  ( 𝑓 ‘ ∅ ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ 1o ) )  ↔  𝑦  ∈  ( 𝐹 ‘ ∅ ) ) ) ) | 
						
							| 26 | 25 | albidv | ⊢ ( 𝑚  =  ∅  →  ( ∀ 𝑦 ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  𝑚  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  𝑚 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  𝑦  ∈  ( 𝐹 ‘ 𝑚 ) )  ↔  ∀ 𝑦 ( ∃ 𝑓 ( 𝑓  Fn  suc  1o  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ 1o )  =  𝑋 )  ∧  ( 𝑓 ‘ ∅ ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ 1o ) )  ↔  𝑦  ∈  ( 𝐹 ‘ ∅ ) ) ) ) | 
						
							| 27 | 26 | imbi2d | ⊢ ( 𝑚  =  ∅  →  ( ( ( 𝑅  Se  𝐴  ∧  𝑋  ∈  𝐴 )  →  ∀ 𝑦 ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  𝑚  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  𝑚 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  𝑦  ∈  ( 𝐹 ‘ 𝑚 ) ) )  ↔  ( ( 𝑅  Se  𝐴  ∧  𝑋  ∈  𝐴 )  →  ∀ 𝑦 ( ∃ 𝑓 ( 𝑓  Fn  suc  1o  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ 1o )  =  𝑋 )  ∧  ( 𝑓 ‘ ∅ ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ 1o ) )  ↔  𝑦  ∈  ( 𝐹 ‘ ∅ ) ) ) ) ) | 
						
							| 28 |  | suceq | ⊢ ( 𝑚  =  𝑛  →  suc  𝑚  =  suc  𝑛 ) | 
						
							| 29 |  | suceq | ⊢ ( suc  𝑚  =  suc  𝑛  →  suc  suc  𝑚  =  suc  suc  𝑛 ) | 
						
							| 30 | 28 29 | syl | ⊢ ( 𝑚  =  𝑛  →  suc  suc  𝑚  =  suc  suc  𝑛 ) | 
						
							| 31 | 30 | fneq2d | ⊢ ( 𝑚  =  𝑛  →  ( 𝑓  Fn  suc  suc  𝑚  ↔  𝑓  Fn  suc  suc  𝑛 ) ) | 
						
							| 32 | 28 | fveqeq2d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝑓 ‘ suc  𝑚 )  =  𝑋  ↔  ( 𝑓 ‘ suc  𝑛 )  =  𝑋 ) ) | 
						
							| 33 | 32 | anbi2d | ⊢ ( 𝑚  =  𝑛  →  ( ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  𝑚 )  =  𝑋 )  ↔  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  𝑛 )  =  𝑋 ) ) ) | 
						
							| 34 | 28 | raleqdv | ⊢ ( 𝑚  =  𝑛  →  ( ∀ 𝑎  ∈  suc  𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 )  ↔  ∀ 𝑎  ∈  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) ) ) | 
						
							| 35 |  | fveq2 | ⊢ ( 𝑎  =  𝑐  →  ( 𝑓 ‘ 𝑎 )  =  ( 𝑓 ‘ 𝑐 ) ) | 
						
							| 36 |  | suceq | ⊢ ( 𝑎  =  𝑐  →  suc  𝑎  =  suc  𝑐 ) | 
						
							| 37 | 36 | fveq2d | ⊢ ( 𝑎  =  𝑐  →  ( 𝑓 ‘ suc  𝑎 )  =  ( 𝑓 ‘ suc  𝑐 ) ) | 
						
							| 38 | 35 37 | breq12d | ⊢ ( 𝑎  =  𝑐  →  ( ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 )  ↔  ( 𝑓 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑐 ) ) ) | 
						
							| 39 | 38 | cbvralvw | ⊢ ( ∀ 𝑎  ∈  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 )  ↔  ∀ 𝑐  ∈  suc  𝑛 ( 𝑓 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑐 ) ) | 
						
							| 40 | 34 39 | bitrdi | ⊢ ( 𝑚  =  𝑛  →  ( ∀ 𝑎  ∈  suc  𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 )  ↔  ∀ 𝑐  ∈  suc  𝑛 ( 𝑓 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑐 ) ) ) | 
						
							| 41 | 31 33 40 | 3anbi123d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝑓  Fn  suc  suc  𝑚  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  𝑚 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  ( 𝑓  Fn  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑓 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑐 ) ) ) ) | 
						
							| 42 | 41 | exbidv | ⊢ ( 𝑚  =  𝑛  →  ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  𝑚  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  𝑚 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  ∃ 𝑓 ( 𝑓  Fn  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑓 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑐 ) ) ) ) | 
						
							| 43 |  | fneq1 | ⊢ ( 𝑓  =  𝑔  →  ( 𝑓  Fn  suc  suc  𝑛  ↔  𝑔  Fn  suc  suc  𝑛 ) ) | 
						
							| 44 |  | fveq1 | ⊢ ( 𝑓  =  𝑔  →  ( 𝑓 ‘ ∅ )  =  ( 𝑔 ‘ ∅ ) ) | 
						
							| 45 | 44 | eqeq1d | ⊢ ( 𝑓  =  𝑔  →  ( ( 𝑓 ‘ ∅ )  =  𝑦  ↔  ( 𝑔 ‘ ∅ )  =  𝑦 ) ) | 
						
							| 46 |  | fveq1 | ⊢ ( 𝑓  =  𝑔  →  ( 𝑓 ‘ suc  𝑛 )  =  ( 𝑔 ‘ suc  𝑛 ) ) | 
						
							| 47 | 46 | eqeq1d | ⊢ ( 𝑓  =  𝑔  →  ( ( 𝑓 ‘ suc  𝑛 )  =  𝑋  ↔  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 ) ) | 
						
							| 48 | 45 47 | anbi12d | ⊢ ( 𝑓  =  𝑔  →  ( ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  𝑛 )  =  𝑋 )  ↔  ( ( 𝑔 ‘ ∅ )  =  𝑦  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 ) ) ) | 
						
							| 49 |  | fveq1 | ⊢ ( 𝑓  =  𝑔  →  ( 𝑓 ‘ 𝑐 )  =  ( 𝑔 ‘ 𝑐 ) ) | 
						
							| 50 |  | fveq1 | ⊢ ( 𝑓  =  𝑔  →  ( 𝑓 ‘ suc  𝑐 )  =  ( 𝑔 ‘ suc  𝑐 ) ) | 
						
							| 51 | 49 50 | breq12d | ⊢ ( 𝑓  =  𝑔  →  ( ( 𝑓 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑐 )  ↔  ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) ) ) | 
						
							| 52 | 51 | ralbidv | ⊢ ( 𝑓  =  𝑔  →  ( ∀ 𝑐  ∈  suc  𝑛 ( 𝑓 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑐 )  ↔  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) ) ) | 
						
							| 53 | 43 48 52 | 3anbi123d | ⊢ ( 𝑓  =  𝑔  →  ( ( 𝑓  Fn  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑓 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑐 ) )  ↔  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑦  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) ) ) ) | 
						
							| 54 | 53 | cbvexvw | ⊢ ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑓 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑐 ) )  ↔  ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑦  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) ) ) | 
						
							| 55 | 42 54 | bitrdi | ⊢ ( 𝑚  =  𝑛  →  ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  𝑚  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  𝑚 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑦  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) ) ) ) | 
						
							| 56 |  | fveq2 | ⊢ ( 𝑚  =  𝑛  →  ( 𝐹 ‘ 𝑚 )  =  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 57 | 56 | eleq2d | ⊢ ( 𝑚  =  𝑛  →  ( 𝑦  ∈  ( 𝐹 ‘ 𝑚 )  ↔  𝑦  ∈  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 58 | 55 57 | bibi12d | ⊢ ( 𝑚  =  𝑛  →  ( ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  𝑚  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  𝑚 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  𝑦  ∈  ( 𝐹 ‘ 𝑚 ) )  ↔  ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑦  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ↔  𝑦  ∈  ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 59 | 58 | albidv | ⊢ ( 𝑚  =  𝑛  →  ( ∀ 𝑦 ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  𝑚  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  𝑚 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  𝑦  ∈  ( 𝐹 ‘ 𝑚 ) )  ↔  ∀ 𝑦 ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑦  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ↔  𝑦  ∈  ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 60 |  | eqeq2 | ⊢ ( 𝑦  =  𝑧  →  ( ( 𝑔 ‘ ∅ )  =  𝑦  ↔  ( 𝑔 ‘ ∅ )  =  𝑧 ) ) | 
						
							| 61 | 60 | anbi1d | ⊢ ( 𝑦  =  𝑧  →  ( ( ( 𝑔 ‘ ∅ )  =  𝑦  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ↔  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 ) ) ) | 
						
							| 62 | 61 | 3anbi2d | ⊢ ( 𝑦  =  𝑧  →  ( ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑦  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ↔  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) ) ) ) | 
						
							| 63 | 62 | exbidv | ⊢ ( 𝑦  =  𝑧  →  ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑦  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ↔  ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) ) ) ) | 
						
							| 64 |  | eleq1 | ⊢ ( 𝑦  =  𝑧  →  ( 𝑦  ∈  ( 𝐹 ‘ 𝑛 )  ↔  𝑧  ∈  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 65 | 63 64 | bibi12d | ⊢ ( 𝑦  =  𝑧  →  ( ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑦  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ↔  𝑦  ∈  ( 𝐹 ‘ 𝑛 ) )  ↔  ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ↔  𝑧  ∈  ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 66 | 65 | cbvalvw | ⊢ ( ∀ 𝑦 ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑦  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ↔  𝑦  ∈  ( 𝐹 ‘ 𝑛 ) )  ↔  ∀ 𝑧 ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ↔  𝑧  ∈  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 67 | 59 66 | bitrdi | ⊢ ( 𝑚  =  𝑛  →  ( ∀ 𝑦 ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  𝑚  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  𝑚 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  𝑦  ∈  ( 𝐹 ‘ 𝑚 ) )  ↔  ∀ 𝑧 ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ↔  𝑧  ∈  ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 68 | 67 | imbi2d | ⊢ ( 𝑚  =  𝑛  →  ( ( ( 𝑅  Se  𝐴  ∧  𝑋  ∈  𝐴 )  →  ∀ 𝑦 ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  𝑚  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  𝑚 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  𝑦  ∈  ( 𝐹 ‘ 𝑚 ) ) )  ↔  ( ( 𝑅  Se  𝐴  ∧  𝑋  ∈  𝐴 )  →  ∀ 𝑧 ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ↔  𝑧  ∈  ( 𝐹 ‘ 𝑛 ) ) ) ) ) | 
						
							| 69 |  | suceq | ⊢ ( 𝑚  =  suc  𝑛  →  suc  𝑚  =  suc  suc  𝑛 ) | 
						
							| 70 |  | suceq | ⊢ ( suc  𝑚  =  suc  suc  𝑛  →  suc  suc  𝑚  =  suc  suc  suc  𝑛 ) | 
						
							| 71 | 69 70 | syl | ⊢ ( 𝑚  =  suc  𝑛  →  suc  suc  𝑚  =  suc  suc  suc  𝑛 ) | 
						
							| 72 | 71 | fneq2d | ⊢ ( 𝑚  =  suc  𝑛  →  ( 𝑓  Fn  suc  suc  𝑚  ↔  𝑓  Fn  suc  suc  suc  𝑛 ) ) | 
						
							| 73 | 69 | fveqeq2d | ⊢ ( 𝑚  =  suc  𝑛  →  ( ( 𝑓 ‘ suc  𝑚 )  =  𝑋  ↔  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑋 ) ) | 
						
							| 74 | 73 | anbi2d | ⊢ ( 𝑚  =  suc  𝑛  →  ( ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  𝑚 )  =  𝑋 )  ↔  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑋 ) ) ) | 
						
							| 75 | 69 | raleqdv | ⊢ ( 𝑚  =  suc  𝑛  →  ( ∀ 𝑎  ∈  suc  𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 )  ↔  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) ) ) | 
						
							| 76 | 72 74 75 | 3anbi123d | ⊢ ( 𝑚  =  suc  𝑛  →  ( ( 𝑓  Fn  suc  suc  𝑚  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  𝑚 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) ) ) ) | 
						
							| 77 | 76 | exbidv | ⊢ ( 𝑚  =  suc  𝑛  →  ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  𝑚  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  𝑚 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  ∃ 𝑓 ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) ) ) ) | 
						
							| 78 |  | fveq2 | ⊢ ( 𝑚  =  suc  𝑛  →  ( 𝐹 ‘ 𝑚 )  =  ( 𝐹 ‘ suc  𝑛 ) ) | 
						
							| 79 | 78 | eleq2d | ⊢ ( 𝑚  =  suc  𝑛  →  ( 𝑦  ∈  ( 𝐹 ‘ 𝑚 )  ↔  𝑦  ∈  ( 𝐹 ‘ suc  𝑛 ) ) ) | 
						
							| 80 | 77 79 | bibi12d | ⊢ ( 𝑚  =  suc  𝑛  →  ( ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  𝑚  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  𝑚 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  𝑦  ∈  ( 𝐹 ‘ 𝑚 ) )  ↔  ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  𝑦  ∈  ( 𝐹 ‘ suc  𝑛 ) ) ) ) | 
						
							| 81 | 80 | albidv | ⊢ ( 𝑚  =  suc  𝑛  →  ( ∀ 𝑦 ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  𝑚  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  𝑚 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  𝑦  ∈  ( 𝐹 ‘ 𝑚 ) )  ↔  ∀ 𝑦 ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  𝑦  ∈  ( 𝐹 ‘ suc  𝑛 ) ) ) ) | 
						
							| 82 | 81 | imbi2d | ⊢ ( 𝑚  =  suc  𝑛  →  ( ( ( 𝑅  Se  𝐴  ∧  𝑋  ∈  𝐴 )  →  ∀ 𝑦 ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  𝑚  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  𝑚 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  𝑦  ∈  ( 𝐹 ‘ 𝑚 ) ) )  ↔  ( ( 𝑅  Se  𝐴  ∧  𝑋  ∈  𝐴 )  →  ∀ 𝑦 ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  𝑦  ∈  ( 𝐹 ‘ suc  𝑛 ) ) ) ) ) | 
						
							| 83 |  | suceq | ⊢ ( 𝑚  =  𝑁  →  suc  𝑚  =  suc  𝑁 ) | 
						
							| 84 |  | suceq | ⊢ ( suc  𝑚  =  suc  𝑁  →  suc  suc  𝑚  =  suc  suc  𝑁 ) | 
						
							| 85 | 83 84 | syl | ⊢ ( 𝑚  =  𝑁  →  suc  suc  𝑚  =  suc  suc  𝑁 ) | 
						
							| 86 | 85 | fneq2d | ⊢ ( 𝑚  =  𝑁  →  ( 𝑓  Fn  suc  suc  𝑚  ↔  𝑓  Fn  suc  suc  𝑁 ) ) | 
						
							| 87 | 83 | fveqeq2d | ⊢ ( 𝑚  =  𝑁  →  ( ( 𝑓 ‘ suc  𝑚 )  =  𝑋  ↔  ( 𝑓 ‘ suc  𝑁 )  =  𝑋 ) ) | 
						
							| 88 | 87 | anbi2d | ⊢ ( 𝑚  =  𝑁  →  ( ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  𝑚 )  =  𝑋 )  ↔  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  𝑁 )  =  𝑋 ) ) ) | 
						
							| 89 | 83 | raleqdv | ⊢ ( 𝑚  =  𝑁  →  ( ∀ 𝑎  ∈  suc  𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 )  ↔  ∀ 𝑎  ∈  suc  𝑁 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) ) ) | 
						
							| 90 | 86 88 89 | 3anbi123d | ⊢ ( 𝑚  =  𝑁  →  ( ( 𝑓  Fn  suc  suc  𝑚  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  𝑚 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  ( 𝑓  Fn  suc  suc  𝑁  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  𝑁 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  𝑁 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) ) ) ) | 
						
							| 91 | 90 | exbidv | ⊢ ( 𝑚  =  𝑁  →  ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  𝑚  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  𝑚 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  ∃ 𝑓 ( 𝑓  Fn  suc  suc  𝑁  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  𝑁 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  𝑁 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) ) ) ) | 
						
							| 92 |  | fveq2 | ⊢ ( 𝑚  =  𝑁  →  ( 𝐹 ‘ 𝑚 )  =  ( 𝐹 ‘ 𝑁 ) ) | 
						
							| 93 | 92 | eleq2d | ⊢ ( 𝑚  =  𝑁  →  ( 𝑦  ∈  ( 𝐹 ‘ 𝑚 )  ↔  𝑦  ∈  ( 𝐹 ‘ 𝑁 ) ) ) | 
						
							| 94 | 91 93 | bibi12d | ⊢ ( 𝑚  =  𝑁  →  ( ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  𝑚  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  𝑚 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  𝑦  ∈  ( 𝐹 ‘ 𝑚 ) )  ↔  ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  𝑁  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  𝑁 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  𝑁 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  𝑦  ∈  ( 𝐹 ‘ 𝑁 ) ) ) ) | 
						
							| 95 | 94 | albidv | ⊢ ( 𝑚  =  𝑁  →  ( ∀ 𝑦 ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  𝑚  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  𝑚 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  𝑦  ∈  ( 𝐹 ‘ 𝑚 ) )  ↔  ∀ 𝑦 ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  𝑁  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  𝑁 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  𝑁 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  𝑦  ∈  ( 𝐹 ‘ 𝑁 ) ) ) ) | 
						
							| 96 | 95 | imbi2d | ⊢ ( 𝑚  =  𝑁  →  ( ( ( 𝑅  Se  𝐴  ∧  𝑋  ∈  𝐴 )  →  ∀ 𝑦 ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  𝑚  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  𝑚 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  𝑦  ∈  ( 𝐹 ‘ 𝑚 ) ) )  ↔  ( ( 𝑅  Se  𝐴  ∧  𝑋  ∈  𝐴 )  →  ∀ 𝑦 ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  𝑁  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  𝑁 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  𝑁 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  𝑦  ∈  ( 𝐹 ‘ 𝑁 ) ) ) ) ) | 
						
							| 97 |  | eqeq2 | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝑓 ‘ 1o )  =  𝑥  ↔  ( 𝑓 ‘ 1o )  =  𝑋 ) ) | 
						
							| 98 | 97 | anbi2d | ⊢ ( 𝑥  =  𝑋  →  ( ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ 1o )  =  𝑥 )  ↔  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ 1o )  =  𝑋 ) ) ) | 
						
							| 99 | 98 | anbi2d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝑓  Fn  suc  1o  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ 1o )  =  𝑥 ) )  ↔  ( 𝑓  Fn  suc  1o  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ 1o )  =  𝑋 ) ) ) ) | 
						
							| 100 | 99 | exbidv | ⊢ ( 𝑥  =  𝑋  →  ( ∃ 𝑓 ( 𝑓  Fn  suc  1o  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ 1o )  =  𝑥 ) )  ↔  ∃ 𝑓 ( 𝑓  Fn  suc  1o  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ 1o )  =  𝑋 ) ) ) ) | 
						
							| 101 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 102 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 103 | 101 102 | ifex | ⊢ if ( 𝑏  =  ∅ ,  𝑦 ,  𝑥 )  ∈  V | 
						
							| 104 |  | eqid | ⊢ ( 𝑏  ∈  suc  1o  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  𝑥 ) )  =  ( 𝑏  ∈  suc  1o  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  𝑥 ) ) | 
						
							| 105 | 103 104 | fnmpti | ⊢ ( 𝑏  ∈  suc  1o  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  𝑥 ) )  Fn  suc  1o | 
						
							| 106 |  | equid | ⊢ 𝑦  =  𝑦 | 
						
							| 107 |  | equid | ⊢ 𝑥  =  𝑥 | 
						
							| 108 | 106 107 | pm3.2i | ⊢ ( 𝑦  =  𝑦  ∧  𝑥  =  𝑥 ) | 
						
							| 109 |  | 1oex | ⊢ 1o  ∈  V | 
						
							| 110 | 109 | sucex | ⊢ suc  1o  ∈  V | 
						
							| 111 | 110 | mptex | ⊢ ( 𝑏  ∈  suc  1o  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  𝑥 ) )  ∈  V | 
						
							| 112 |  | fneq1 | ⊢ ( 𝑓  =  ( 𝑏  ∈  suc  1o  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  𝑥 ) )  →  ( 𝑓  Fn  suc  1o  ↔  ( 𝑏  ∈  suc  1o  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  𝑥 ) )  Fn  suc  1o ) ) | 
						
							| 113 |  | fveq1 | ⊢ ( 𝑓  =  ( 𝑏  ∈  suc  1o  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  𝑥 ) )  →  ( 𝑓 ‘ ∅ )  =  ( ( 𝑏  ∈  suc  1o  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  𝑥 ) ) ‘ ∅ ) ) | 
						
							| 114 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 115 | 114 | onordi | ⊢ Ord  1o | 
						
							| 116 |  | 0elsuc | ⊢ ( Ord  1o  →  ∅  ∈  suc  1o ) | 
						
							| 117 |  | iftrue | ⊢ ( 𝑏  =  ∅  →  if ( 𝑏  =  ∅ ,  𝑦 ,  𝑥 )  =  𝑦 ) | 
						
							| 118 | 117 104 101 | fvmpt | ⊢ ( ∅  ∈  suc  1o  →  ( ( 𝑏  ∈  suc  1o  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  𝑥 ) ) ‘ ∅ )  =  𝑦 ) | 
						
							| 119 | 115 116 118 | mp2b | ⊢ ( ( 𝑏  ∈  suc  1o  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  𝑥 ) ) ‘ ∅ )  =  𝑦 | 
						
							| 120 | 113 119 | eqtrdi | ⊢ ( 𝑓  =  ( 𝑏  ∈  suc  1o  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  𝑥 ) )  →  ( 𝑓 ‘ ∅ )  =  𝑦 ) | 
						
							| 121 | 120 | eqeq1d | ⊢ ( 𝑓  =  ( 𝑏  ∈  suc  1o  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  𝑥 ) )  →  ( ( 𝑓 ‘ ∅ )  =  𝑦  ↔  𝑦  =  𝑦 ) ) | 
						
							| 122 |  | fveq1 | ⊢ ( 𝑓  =  ( 𝑏  ∈  suc  1o  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  𝑥 ) )  →  ( 𝑓 ‘ 1o )  =  ( ( 𝑏  ∈  suc  1o  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  𝑥 ) ) ‘ 1o ) ) | 
						
							| 123 | 109 | sucid | ⊢ 1o  ∈  suc  1o | 
						
							| 124 |  | eqeq1 | ⊢ ( 𝑏  =  1o  →  ( 𝑏  =  ∅  ↔  1o  =  ∅ ) ) | 
						
							| 125 | 124 | ifbid | ⊢ ( 𝑏  =  1o  →  if ( 𝑏  =  ∅ ,  𝑦 ,  𝑥 )  =  if ( 1o  =  ∅ ,  𝑦 ,  𝑥 ) ) | 
						
							| 126 |  | 1n0 | ⊢ 1o  ≠  ∅ | 
						
							| 127 | 126 | neii | ⊢ ¬  1o  =  ∅ | 
						
							| 128 | 127 | iffalsei | ⊢ if ( 1o  =  ∅ ,  𝑦 ,  𝑥 )  =  𝑥 | 
						
							| 129 | 125 128 | eqtrdi | ⊢ ( 𝑏  =  1o  →  if ( 𝑏  =  ∅ ,  𝑦 ,  𝑥 )  =  𝑥 ) | 
						
							| 130 | 129 104 102 | fvmpt | ⊢ ( 1o  ∈  suc  1o  →  ( ( 𝑏  ∈  suc  1o  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  𝑥 ) ) ‘ 1o )  =  𝑥 ) | 
						
							| 131 | 123 130 | ax-mp | ⊢ ( ( 𝑏  ∈  suc  1o  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  𝑥 ) ) ‘ 1o )  =  𝑥 | 
						
							| 132 | 122 131 | eqtrdi | ⊢ ( 𝑓  =  ( 𝑏  ∈  suc  1o  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  𝑥 ) )  →  ( 𝑓 ‘ 1o )  =  𝑥 ) | 
						
							| 133 | 132 | eqeq1d | ⊢ ( 𝑓  =  ( 𝑏  ∈  suc  1o  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  𝑥 ) )  →  ( ( 𝑓 ‘ 1o )  =  𝑥  ↔  𝑥  =  𝑥 ) ) | 
						
							| 134 | 121 133 | anbi12d | ⊢ ( 𝑓  =  ( 𝑏  ∈  suc  1o  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  𝑥 ) )  →  ( ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ 1o )  =  𝑥 )  ↔  ( 𝑦  =  𝑦  ∧  𝑥  =  𝑥 ) ) ) | 
						
							| 135 | 112 134 | anbi12d | ⊢ ( 𝑓  =  ( 𝑏  ∈  suc  1o  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  𝑥 ) )  →  ( ( 𝑓  Fn  suc  1o  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ 1o )  =  𝑥 ) )  ↔  ( ( 𝑏  ∈  suc  1o  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  𝑥 ) )  Fn  suc  1o  ∧  ( 𝑦  =  𝑦  ∧  𝑥  =  𝑥 ) ) ) ) | 
						
							| 136 | 111 135 | spcev | ⊢ ( ( ( 𝑏  ∈  suc  1o  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  𝑥 ) )  Fn  suc  1o  ∧  ( 𝑦  =  𝑦  ∧  𝑥  =  𝑥 ) )  →  ∃ 𝑓 ( 𝑓  Fn  suc  1o  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ 1o )  =  𝑥 ) ) ) | 
						
							| 137 | 105 108 136 | mp2an | ⊢ ∃ 𝑓 ( 𝑓  Fn  suc  1o  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ 1o )  =  𝑥 ) ) | 
						
							| 138 | 100 137 | vtoclg | ⊢ ( 𝑋  ∈  𝐴  →  ∃ 𝑓 ( 𝑓  Fn  suc  1o  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ 1o )  =  𝑋 ) ) ) | 
						
							| 139 | 138 | adantl | ⊢ ( ( 𝑅  Se  𝐴  ∧  𝑋  ∈  𝐴 )  →  ∃ 𝑓 ( 𝑓  Fn  suc  1o  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ 1o )  =  𝑋 ) ) ) | 
						
							| 140 | 139 | biantrurd | ⊢ ( ( 𝑅  Se  𝐴  ∧  𝑋  ∈  𝐴 )  →  ( ( 𝑦  ∈  𝐴  ∧  𝑦 𝑅 𝑋 )  ↔  ( ∃ 𝑓 ( 𝑓  Fn  suc  1o  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ 1o )  =  𝑋 ) )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦 𝑅 𝑋 ) ) ) ) | 
						
							| 141 | 101 | elpred | ⊢ ( 𝑋  ∈  𝐴  →  ( 𝑦  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑋 )  ↔  ( 𝑦  ∈  𝐴  ∧  𝑦 𝑅 𝑋 ) ) ) | 
						
							| 142 | 141 | adantl | ⊢ ( ( 𝑅  Se  𝐴  ∧  𝑋  ∈  𝐴 )  →  ( 𝑦  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑋 )  ↔  ( 𝑦  ∈  𝐴  ∧  𝑦 𝑅 𝑋 ) ) ) | 
						
							| 143 |  | brres | ⊢ ( 𝑋  ∈  𝐴  →  ( 𝑦 ( 𝑅  ↾  𝐴 ) 𝑋  ↔  ( 𝑦  ∈  𝐴  ∧  𝑦 𝑅 𝑋 ) ) ) | 
						
							| 144 | 143 | adantl | ⊢ ( ( 𝑅  Se  𝐴  ∧  𝑋  ∈  𝐴 )  →  ( 𝑦 ( 𝑅  ↾  𝐴 ) 𝑋  ↔  ( 𝑦  ∈  𝐴  ∧  𝑦 𝑅 𝑋 ) ) ) | 
						
							| 145 | 144 | anbi2d | ⊢ ( ( 𝑅  Se  𝐴  ∧  𝑋  ∈  𝐴 )  →  ( ( ∃ 𝑓 ( 𝑓  Fn  suc  1o  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ 1o )  =  𝑋 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑋 )  ↔  ( ∃ 𝑓 ( 𝑓  Fn  suc  1o  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ 1o )  =  𝑋 ) )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦 𝑅 𝑋 ) ) ) ) | 
						
							| 146 | 140 142 145 | 3bitr4rd | ⊢ ( ( 𝑅  Se  𝐴  ∧  𝑋  ∈  𝐴 )  →  ( ( ∃ 𝑓 ( 𝑓  Fn  suc  1o  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ 1o )  =  𝑋 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑋 )  ↔  𝑦  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) ) ) | 
						
							| 147 |  | df-3an | ⊢ ( ( 𝑓  Fn  suc  1o  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ 1o )  =  𝑋 )  ∧  ( 𝑓 ‘ ∅ ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ 1o ) )  ↔  ( ( 𝑓  Fn  suc  1o  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ 1o )  =  𝑋 ) )  ∧  ( 𝑓 ‘ ∅ ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ 1o ) ) ) | 
						
							| 148 |  | breq12 | ⊢ ( ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ 1o )  =  𝑋 )  →  ( ( 𝑓 ‘ ∅ ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ 1o )  ↔  𝑦 ( 𝑅  ↾  𝐴 ) 𝑋 ) ) | 
						
							| 149 | 148 | adantl | ⊢ ( ( 𝑓  Fn  suc  1o  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ 1o )  =  𝑋 ) )  →  ( ( 𝑓 ‘ ∅ ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ 1o )  ↔  𝑦 ( 𝑅  ↾  𝐴 ) 𝑋 ) ) | 
						
							| 150 | 149 | pm5.32i | ⊢ ( ( ( 𝑓  Fn  suc  1o  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ 1o )  =  𝑋 ) )  ∧  ( 𝑓 ‘ ∅ ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ 1o ) )  ↔  ( ( 𝑓  Fn  suc  1o  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ 1o )  =  𝑋 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑋 ) ) | 
						
							| 151 | 147 150 | bitri | ⊢ ( ( 𝑓  Fn  suc  1o  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ 1o )  =  𝑋 )  ∧  ( 𝑓 ‘ ∅ ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ 1o ) )  ↔  ( ( 𝑓  Fn  suc  1o  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ 1o )  =  𝑋 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑋 ) ) | 
						
							| 152 | 151 | exbii | ⊢ ( ∃ 𝑓 ( 𝑓  Fn  suc  1o  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ 1o )  =  𝑋 )  ∧  ( 𝑓 ‘ ∅ ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ 1o ) )  ↔  ∃ 𝑓 ( ( 𝑓  Fn  suc  1o  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ 1o )  =  𝑋 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑋 ) ) | 
						
							| 153 |  | 19.41v | ⊢ ( ∃ 𝑓 ( ( 𝑓  Fn  suc  1o  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ 1o )  =  𝑋 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑋 )  ↔  ( ∃ 𝑓 ( 𝑓  Fn  suc  1o  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ 1o )  =  𝑋 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑋 ) ) | 
						
							| 154 | 152 153 | bitri | ⊢ ( ∃ 𝑓 ( 𝑓  Fn  suc  1o  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ 1o )  =  𝑋 )  ∧  ( 𝑓 ‘ ∅ ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ 1o ) )  ↔  ( ∃ 𝑓 ( 𝑓  Fn  suc  1o  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ 1o )  =  𝑋 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑋 ) ) | 
						
							| 155 | 154 | a1i | ⊢ ( ( 𝑅  Se  𝐴  ∧  𝑋  ∈  𝐴 )  →  ( ∃ 𝑓 ( 𝑓  Fn  suc  1o  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ 1o )  =  𝑋 )  ∧  ( 𝑓 ‘ ∅ ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ 1o ) )  ↔  ( ∃ 𝑓 ( 𝑓  Fn  suc  1o  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ 1o )  =  𝑋 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑋 ) ) ) | 
						
							| 156 | 1 | fveq1i | ⊢ ( 𝐹 ‘ ∅ )  =  ( rec ( ( 𝑏  ∈  V  ↦  ∪  𝑤  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) ,  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) ) ‘ ∅ ) | 
						
							| 157 |  | setlikespec | ⊢ ( ( 𝑋  ∈  𝐴  ∧  𝑅  Se  𝐴 )  →  Pred ( 𝑅 ,  𝐴 ,  𝑋 )  ∈  V ) | 
						
							| 158 | 157 | ancoms | ⊢ ( ( 𝑅  Se  𝐴  ∧  𝑋  ∈  𝐴 )  →  Pred ( 𝑅 ,  𝐴 ,  𝑋 )  ∈  V ) | 
						
							| 159 |  | rdg0g | ⊢ ( Pred ( 𝑅 ,  𝐴 ,  𝑋 )  ∈  V  →  ( rec ( ( 𝑏  ∈  V  ↦  ∪  𝑤  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) ,  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) ) ‘ ∅ )  =  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) ) | 
						
							| 160 | 158 159 | syl | ⊢ ( ( 𝑅  Se  𝐴  ∧  𝑋  ∈  𝐴 )  →  ( rec ( ( 𝑏  ∈  V  ↦  ∪  𝑤  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) ,  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) ) ‘ ∅ )  =  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) ) | 
						
							| 161 | 156 160 | eqtrid | ⊢ ( ( 𝑅  Se  𝐴  ∧  𝑋  ∈  𝐴 )  →  ( 𝐹 ‘ ∅ )  =  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) ) | 
						
							| 162 | 161 | eleq2d | ⊢ ( ( 𝑅  Se  𝐴  ∧  𝑋  ∈  𝐴 )  →  ( 𝑦  ∈  ( 𝐹 ‘ ∅ )  ↔  𝑦  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) ) ) | 
						
							| 163 | 146 155 162 | 3bitr4d | ⊢ ( ( 𝑅  Se  𝐴  ∧  𝑋  ∈  𝐴 )  →  ( ∃ 𝑓 ( 𝑓  Fn  suc  1o  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ 1o )  =  𝑋 )  ∧  ( 𝑓 ‘ ∅ ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ 1o ) )  ↔  𝑦  ∈  ( 𝐹 ‘ ∅ ) ) ) | 
						
							| 164 | 163 | alrimiv | ⊢ ( ( 𝑅  Se  𝐴  ∧  𝑋  ∈  𝐴 )  →  ∀ 𝑦 ( ∃ 𝑓 ( 𝑓  Fn  suc  1o  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ 1o )  =  𝑋 )  ∧  ( 𝑓 ‘ ∅ ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ 1o ) )  ↔  𝑦  ∈  ( 𝐹 ‘ ∅ ) ) ) | 
						
							| 165 |  | eliun | ⊢ ( 𝑦  ∈  ∪  𝑧  ∈  ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ↔  ∃ 𝑧  ∈  ( 𝐹 ‘ 𝑛 ) 𝑦  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) | 
						
							| 166 |  | df-rex | ⊢ ( ∃ 𝑧  ∈  ( 𝐹 ‘ 𝑛 ) 𝑦  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ↔  ∃ 𝑧 ( 𝑧  ∈  ( 𝐹 ‘ 𝑛 )  ∧  𝑦  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) | 
						
							| 167 | 165 166 | bitri | ⊢ ( 𝑦  ∈  ∪  𝑧  ∈  ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ↔  ∃ 𝑧 ( 𝑧  ∈  ( 𝐹 ‘ 𝑛 )  ∧  𝑦  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) | 
						
							| 168 | 101 | elpred | ⊢ ( 𝑧  ∈  V  →  ( 𝑦  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ↔  ( 𝑦  ∈  𝐴  ∧  𝑦 𝑅 𝑧 ) ) ) | 
						
							| 169 | 168 | elv | ⊢ ( 𝑦  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ↔  ( 𝑦  ∈  𝐴  ∧  𝑦 𝑅 𝑧 ) ) | 
						
							| 170 | 169 | anbi2i | ⊢ ( ( 𝑧  ∈  ( 𝐹 ‘ 𝑛 )  ∧  𝑦  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) )  ↔  ( 𝑧  ∈  ( 𝐹 ‘ 𝑛 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦 𝑅 𝑧 ) ) ) | 
						
							| 171 |  | anbi1 | ⊢ ( ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ↔  𝑧  ∈  ( 𝐹 ‘ 𝑛 ) )  →  ( ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦 𝑅 𝑧 ) )  ↔  ( 𝑧  ∈  ( 𝐹 ‘ 𝑛 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦 𝑅 𝑧 ) ) ) ) | 
						
							| 172 | 170 171 | bitr4id | ⊢ ( ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ↔  𝑧  ∈  ( 𝐹 ‘ 𝑛 ) )  →  ( ( 𝑧  ∈  ( 𝐹 ‘ 𝑛 )  ∧  𝑦  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) )  ↔  ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦 𝑅 𝑧 ) ) ) ) | 
						
							| 173 | 172 | alexbii | ⊢ ( ∀ 𝑧 ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ↔  𝑧  ∈  ( 𝐹 ‘ 𝑛 ) )  →  ( ∃ 𝑧 ( 𝑧  ∈  ( 𝐹 ‘ 𝑛 )  ∧  𝑦  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) )  ↔  ∃ 𝑧 ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦 𝑅 𝑧 ) ) ) ) | 
						
							| 174 | 173 | 3ad2ant3 | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑅  Se  𝐴  ∧  𝑋  ∈  𝐴 )  ∧  ∀ 𝑧 ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ↔  𝑧  ∈  ( 𝐹 ‘ 𝑛 ) ) )  →  ( ∃ 𝑧 ( 𝑧  ∈  ( 𝐹 ‘ 𝑛 )  ∧  𝑦  ∈  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) )  ↔  ∃ 𝑧 ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦 𝑅 𝑧 ) ) ) ) | 
						
							| 175 | 167 174 | bitrid | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑅  Se  𝐴  ∧  𝑋  ∈  𝐴 )  ∧  ∀ 𝑧 ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ↔  𝑧  ∈  ( 𝐹 ‘ 𝑛 ) ) )  →  ( 𝑦  ∈  ∪  𝑧  ∈  ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ↔  ∃ 𝑧 ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦 𝑅 𝑧 ) ) ) ) | 
						
							| 176 |  | nnon | ⊢ ( 𝑛  ∈  ω  →  𝑛  ∈  On ) | 
						
							| 177 |  | fvex | ⊢ ( 𝐹 ‘ 𝑛 )  ∈  V | 
						
							| 178 | 1 | ttrclselem1 | ⊢ ( 𝑛  ∈  ω  →  ( 𝐹 ‘ 𝑛 )  ⊆  𝐴 ) | 
						
							| 179 | 178 | adantr | ⊢ ( ( 𝑛  ∈  ω  ∧  𝑅  Se  𝐴 )  →  ( 𝐹 ‘ 𝑛 )  ⊆  𝐴 ) | 
						
							| 180 |  | dfse3 | ⊢ ( 𝑅  Se  𝐴  ↔  ∀ 𝑧  ∈  𝐴 Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ∈  V ) | 
						
							| 181 | 180 | biimpi | ⊢ ( 𝑅  Se  𝐴  →  ∀ 𝑧  ∈  𝐴 Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ∈  V ) | 
						
							| 182 | 181 | adantl | ⊢ ( ( 𝑛  ∈  ω  ∧  𝑅  Se  𝐴 )  →  ∀ 𝑧  ∈  𝐴 Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ∈  V ) | 
						
							| 183 |  | ssralv | ⊢ ( ( 𝐹 ‘ 𝑛 )  ⊆  𝐴  →  ( ∀ 𝑧  ∈  𝐴 Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ∈  V  →  ∀ 𝑧  ∈  ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ∈  V ) ) | 
						
							| 184 | 179 182 183 | sylc | ⊢ ( ( 𝑛  ∈  ω  ∧  𝑅  Se  𝐴 )  →  ∀ 𝑧  ∈  ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ∈  V ) | 
						
							| 185 | 184 | adantrr | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑅  Se  𝐴  ∧  𝑋  ∈  𝐴 ) )  →  ∀ 𝑧  ∈  ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ∈  V ) | 
						
							| 186 |  | iunexg | ⊢ ( ( ( 𝐹 ‘ 𝑛 )  ∈  V  ∧  ∀ 𝑧  ∈  ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ∈  V )  →  ∪  𝑧  ∈  ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ∈  V ) | 
						
							| 187 | 177 185 186 | sylancr | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑅  Se  𝐴  ∧  𝑋  ∈  𝐴 ) )  →  ∪  𝑧  ∈  ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ∈  V ) | 
						
							| 188 |  | nfcv | ⊢ Ⅎ 𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑋 ) | 
						
							| 189 |  | nfcv | ⊢ Ⅎ 𝑏 𝑛 | 
						
							| 190 |  | nfmpt1 | ⊢ Ⅎ 𝑏 ( 𝑏  ∈  V  ↦  ∪  𝑤  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) | 
						
							| 191 | 190 188 | nfrdg | ⊢ Ⅎ 𝑏 rec ( ( 𝑏  ∈  V  ↦  ∪  𝑤  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) ,  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) ) | 
						
							| 192 | 1 191 | nfcxfr | ⊢ Ⅎ 𝑏 𝐹 | 
						
							| 193 | 192 189 | nffv | ⊢ Ⅎ 𝑏 ( 𝐹 ‘ 𝑛 ) | 
						
							| 194 |  | nfcv | ⊢ Ⅎ 𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑧 ) | 
						
							| 195 | 193 194 | nfiun | ⊢ Ⅎ 𝑏 ∪  𝑧  ∈  ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 ,  𝐴 ,  𝑧 ) | 
						
							| 196 |  | predeq3 | ⊢ ( 𝑤  =  𝑧  →  Pred ( 𝑅 ,  𝐴 ,  𝑤 )  =  Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) | 
						
							| 197 | 196 | cbviunv | ⊢ ∪  𝑤  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑤 )  =  ∪  𝑧  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑧 ) | 
						
							| 198 |  | iuneq1 | ⊢ ( 𝑏  =  ( 𝐹 ‘ 𝑛 )  →  ∪  𝑧  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑧 )  =  ∪  𝑧  ∈  ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) | 
						
							| 199 | 197 198 | eqtrid | ⊢ ( 𝑏  =  ( 𝐹 ‘ 𝑛 )  →  ∪  𝑤  ∈  𝑏 Pred ( 𝑅 ,  𝐴 ,  𝑤 )  =  ∪  𝑧  ∈  ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) | 
						
							| 200 | 188 189 195 1 199 | rdgsucmptf | ⊢ ( ( 𝑛  ∈  On  ∧  ∪  𝑧  ∈  ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 ,  𝐴 ,  𝑧 )  ∈  V )  →  ( 𝐹 ‘ suc  𝑛 )  =  ∪  𝑧  ∈  ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) | 
						
							| 201 | 176 187 200 | syl2an2r | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑅  Se  𝐴  ∧  𝑋  ∈  𝐴 ) )  →  ( 𝐹 ‘ suc  𝑛 )  =  ∪  𝑧  ∈  ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) | 
						
							| 202 | 201 | 3adant3 | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑅  Se  𝐴  ∧  𝑋  ∈  𝐴 )  ∧  ∀ 𝑧 ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ↔  𝑧  ∈  ( 𝐹 ‘ 𝑛 ) ) )  →  ( 𝐹 ‘ suc  𝑛 )  =  ∪  𝑧  ∈  ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) | 
						
							| 203 | 202 | eleq2d | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑅  Se  𝐴  ∧  𝑋  ∈  𝐴 )  ∧  ∀ 𝑧 ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ↔  𝑧  ∈  ( 𝐹 ‘ 𝑛 ) ) )  →  ( 𝑦  ∈  ( 𝐹 ‘ suc  𝑛 )  ↔  𝑦  ∈  ∪  𝑧  ∈  ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 ,  𝐴 ,  𝑧 ) ) ) | 
						
							| 204 |  | eqeq2 | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑥  ↔  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑋 ) ) | 
						
							| 205 | 204 | anbi2d | ⊢ ( 𝑥  =  𝑋  →  ( ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑥 )  ↔  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑋 ) ) ) | 
						
							| 206 | 205 | 3anbi2d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) ) ) ) | 
						
							| 207 | 206 | exbidv | ⊢ ( 𝑥  =  𝑋  →  ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  ∃ 𝑓 ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) ) ) ) | 
						
							| 208 |  | eqeq2 | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝑔 ‘ suc  𝑛 )  =  𝑥  ↔  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 ) ) | 
						
							| 209 | 208 | anbi2d | ⊢ ( 𝑥  =  𝑋  →  ( ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ↔  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 ) ) ) | 
						
							| 210 | 209 | 3anbi2d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ↔  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) ) ) ) | 
						
							| 211 | 210 | exbidv | ⊢ ( 𝑥  =  𝑋  →  ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ↔  ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) ) ) ) | 
						
							| 212 | 211 | anbi1d | ⊢ ( 𝑥  =  𝑋  →  ( ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦 𝑅 𝑧 ) )  ↔  ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦 𝑅 𝑧 ) ) ) ) | 
						
							| 213 | 212 | exbidv | ⊢ ( 𝑥  =  𝑋  →  ( ∃ 𝑧 ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦 𝑅 𝑧 ) )  ↔  ∃ 𝑧 ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦 𝑅 𝑧 ) ) ) ) | 
						
							| 214 | 207 213 | bibi12d | ⊢ ( 𝑥  =  𝑋  →  ( ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  ∃ 𝑧 ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦 𝑅 𝑧 ) ) )  ↔  ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  ∃ 𝑧 ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦 𝑅 𝑧 ) ) ) ) ) | 
						
							| 215 | 214 | imbi2d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝑛  ∈  ω  →  ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  ∃ 𝑧 ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦 𝑅 𝑧 ) ) ) )  ↔  ( 𝑛  ∈  ω  →  ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  ∃ 𝑧 ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦 𝑅 𝑧 ) ) ) ) ) ) | 
						
							| 216 |  | fvex | ⊢ ( 𝑓 ‘ suc  𝑏 )  ∈  V | 
						
							| 217 |  | eqid | ⊢ ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) )  =  ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) ) | 
						
							| 218 | 216 217 | fnmpti | ⊢ ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) )  Fn  suc  suc  𝑛 | 
						
							| 219 | 218 | a1i | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) ) )  →  ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) )  Fn  suc  suc  𝑛 ) | 
						
							| 220 |  | peano2 | ⊢ ( 𝑛  ∈  ω  →  suc  𝑛  ∈  ω ) | 
						
							| 221 | 220 | adantr | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) ) )  →  suc  𝑛  ∈  ω ) | 
						
							| 222 |  | nnord | ⊢ ( suc  𝑛  ∈  ω  →  Ord  suc  𝑛 ) | 
						
							| 223 | 221 222 | syl | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) ) )  →  Ord  suc  𝑛 ) | 
						
							| 224 |  | 0elsuc | ⊢ ( Ord  suc  𝑛  →  ∅  ∈  suc  suc  𝑛 ) | 
						
							| 225 | 223 224 | syl | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) ) )  →  ∅  ∈  suc  suc  𝑛 ) | 
						
							| 226 |  | suceq | ⊢ ( 𝑏  =  ∅  →  suc  𝑏  =  suc  ∅ ) | 
						
							| 227 | 226 | fveq2d | ⊢ ( 𝑏  =  ∅  →  ( 𝑓 ‘ suc  𝑏 )  =  ( 𝑓 ‘ suc  ∅ ) ) | 
						
							| 228 |  | fvex | ⊢ ( 𝑓 ‘ suc  ∅ )  ∈  V | 
						
							| 229 | 227 217 228 | fvmpt | ⊢ ( ∅  ∈  suc  suc  𝑛  →  ( ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) ) ‘ ∅ )  =  ( 𝑓 ‘ suc  ∅ ) ) | 
						
							| 230 | 225 229 | syl | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) ) )  →  ( ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) ) ‘ ∅ )  =  ( 𝑓 ‘ suc  ∅ ) ) | 
						
							| 231 |  | vex | ⊢ 𝑛  ∈  V | 
						
							| 232 | 231 | sucex | ⊢ suc  𝑛  ∈  V | 
						
							| 233 | 232 | sucid | ⊢ suc  𝑛  ∈  suc  suc  𝑛 | 
						
							| 234 |  | suceq | ⊢ ( 𝑏  =  suc  𝑛  →  suc  𝑏  =  suc  suc  𝑛 ) | 
						
							| 235 | 234 | fveq2d | ⊢ ( 𝑏  =  suc  𝑛  →  ( 𝑓 ‘ suc  𝑏 )  =  ( 𝑓 ‘ suc  suc  𝑛 ) ) | 
						
							| 236 |  | fvex | ⊢ ( 𝑓 ‘ suc  suc  𝑛 )  ∈  V | 
						
							| 237 | 235 217 236 | fvmpt | ⊢ ( suc  𝑛  ∈  suc  suc  𝑛  →  ( ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) ) ‘ suc  𝑛 )  =  ( 𝑓 ‘ suc  suc  𝑛 ) ) | 
						
							| 238 | 233 237 | mp1i | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) ) )  →  ( ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) ) ‘ suc  𝑛 )  =  ( 𝑓 ‘ suc  suc  𝑛 ) ) | 
						
							| 239 |  | simpr2r | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) ) )  →  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑥 ) | 
						
							| 240 | 238 239 | eqtrd | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) ) )  →  ( ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) ) ‘ suc  𝑛 )  =  𝑥 ) | 
						
							| 241 |  | fveq2 | ⊢ ( 𝑎  =  suc  𝑐  →  ( 𝑓 ‘ 𝑎 )  =  ( 𝑓 ‘ suc  𝑐 ) ) | 
						
							| 242 |  | suceq | ⊢ ( 𝑎  =  suc  𝑐  →  suc  𝑎  =  suc  suc  𝑐 ) | 
						
							| 243 | 242 | fveq2d | ⊢ ( 𝑎  =  suc  𝑐  →  ( 𝑓 ‘ suc  𝑎 )  =  ( 𝑓 ‘ suc  suc  𝑐 ) ) | 
						
							| 244 | 241 243 | breq12d | ⊢ ( 𝑎  =  suc  𝑐  →  ( ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 )  ↔  ( 𝑓 ‘ suc  𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  suc  𝑐 ) ) ) | 
						
							| 245 |  | simplr3 | ⊢ ( ( ( 𝑛  ∈  ω  ∧  ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) ) )  ∧  𝑐  ∈  suc  𝑛 )  →  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) ) | 
						
							| 246 |  | ordsucelsuc | ⊢ ( Ord  suc  𝑛  →  ( 𝑐  ∈  suc  𝑛  ↔  suc  𝑐  ∈  suc  suc  𝑛 ) ) | 
						
							| 247 | 223 246 | syl | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) ) )  →  ( 𝑐  ∈  suc  𝑛  ↔  suc  𝑐  ∈  suc  suc  𝑛 ) ) | 
						
							| 248 | 247 | biimpa | ⊢ ( ( ( 𝑛  ∈  ω  ∧  ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) ) )  ∧  𝑐  ∈  suc  𝑛 )  →  suc  𝑐  ∈  suc  suc  𝑛 ) | 
						
							| 249 | 244 245 248 | rspcdva | ⊢ ( ( ( 𝑛  ∈  ω  ∧  ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) ) )  ∧  𝑐  ∈  suc  𝑛 )  →  ( 𝑓 ‘ suc  𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  suc  𝑐 ) ) | 
						
							| 250 |  | elelsuc | ⊢ ( 𝑐  ∈  suc  𝑛  →  𝑐  ∈  suc  suc  𝑛 ) | 
						
							| 251 |  | suceq | ⊢ ( 𝑏  =  𝑐  →  suc  𝑏  =  suc  𝑐 ) | 
						
							| 252 | 251 | fveq2d | ⊢ ( 𝑏  =  𝑐  →  ( 𝑓 ‘ suc  𝑏 )  =  ( 𝑓 ‘ suc  𝑐 ) ) | 
						
							| 253 |  | fvex | ⊢ ( 𝑓 ‘ suc  𝑐 )  ∈  V | 
						
							| 254 | 252 217 253 | fvmpt | ⊢ ( 𝑐  ∈  suc  suc  𝑛  →  ( ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) ) ‘ 𝑐 )  =  ( 𝑓 ‘ suc  𝑐 ) ) | 
						
							| 255 | 250 254 | syl | ⊢ ( 𝑐  ∈  suc  𝑛  →  ( ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) ) ‘ 𝑐 )  =  ( 𝑓 ‘ suc  𝑐 ) ) | 
						
							| 256 | 255 | adantl | ⊢ ( ( ( 𝑛  ∈  ω  ∧  ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) ) )  ∧  𝑐  ∈  suc  𝑛 )  →  ( ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) ) ‘ 𝑐 )  =  ( 𝑓 ‘ suc  𝑐 ) ) | 
						
							| 257 |  | suceq | ⊢ ( 𝑏  =  suc  𝑐  →  suc  𝑏  =  suc  suc  𝑐 ) | 
						
							| 258 | 257 | fveq2d | ⊢ ( 𝑏  =  suc  𝑐  →  ( 𝑓 ‘ suc  𝑏 )  =  ( 𝑓 ‘ suc  suc  𝑐 ) ) | 
						
							| 259 |  | fvex | ⊢ ( 𝑓 ‘ suc  suc  𝑐 )  ∈  V | 
						
							| 260 | 258 217 259 | fvmpt | ⊢ ( suc  𝑐  ∈  suc  suc  𝑛  →  ( ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) ) ‘ suc  𝑐 )  =  ( 𝑓 ‘ suc  suc  𝑐 ) ) | 
						
							| 261 | 248 260 | syl | ⊢ ( ( ( 𝑛  ∈  ω  ∧  ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) ) )  ∧  𝑐  ∈  suc  𝑛 )  →  ( ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) ) ‘ suc  𝑐 )  =  ( 𝑓 ‘ suc  suc  𝑐 ) ) | 
						
							| 262 | 249 256 261 | 3brtr4d | ⊢ ( ( ( 𝑛  ∈  ω  ∧  ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) ) )  ∧  𝑐  ∈  suc  𝑛 )  →  ( ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) ) ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) ) ‘ suc  𝑐 ) ) | 
						
							| 263 | 262 | ralrimiva | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) ) )  →  ∀ 𝑐  ∈  suc  𝑛 ( ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) ) ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) ) ‘ suc  𝑐 ) ) | 
						
							| 264 | 232 | sucex | ⊢ suc  suc  𝑛  ∈  V | 
						
							| 265 | 264 | mptex | ⊢ ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) )  ∈  V | 
						
							| 266 |  | fneq1 | ⊢ ( 𝑔  =  ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) )  →  ( 𝑔  Fn  suc  suc  𝑛  ↔  ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) )  Fn  suc  suc  𝑛 ) ) | 
						
							| 267 |  | fveq1 | ⊢ ( 𝑔  =  ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) )  →  ( 𝑔 ‘ ∅ )  =  ( ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) ) ‘ ∅ ) ) | 
						
							| 268 | 267 | eqeq1d | ⊢ ( 𝑔  =  ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) )  →  ( ( 𝑔 ‘ ∅ )  =  ( 𝑓 ‘ suc  ∅ )  ↔  ( ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) ) ‘ ∅ )  =  ( 𝑓 ‘ suc  ∅ ) ) ) | 
						
							| 269 |  | fveq1 | ⊢ ( 𝑔  =  ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) )  →  ( 𝑔 ‘ suc  𝑛 )  =  ( ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) ) ‘ suc  𝑛 ) ) | 
						
							| 270 | 269 | eqeq1d | ⊢ ( 𝑔  =  ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) )  →  ( ( 𝑔 ‘ suc  𝑛 )  =  𝑥  ↔  ( ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) ) ‘ suc  𝑛 )  =  𝑥 ) ) | 
						
							| 271 | 268 270 | anbi12d | ⊢ ( 𝑔  =  ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) )  →  ( ( ( 𝑔 ‘ ∅ )  =  ( 𝑓 ‘ suc  ∅ )  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ↔  ( ( ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) ) ‘ ∅ )  =  ( 𝑓 ‘ suc  ∅ )  ∧  ( ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) ) ‘ suc  𝑛 )  =  𝑥 ) ) ) | 
						
							| 272 |  | fveq1 | ⊢ ( 𝑔  =  ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) )  →  ( 𝑔 ‘ 𝑐 )  =  ( ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) ) ‘ 𝑐 ) ) | 
						
							| 273 |  | fveq1 | ⊢ ( 𝑔  =  ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) )  →  ( 𝑔 ‘ suc  𝑐 )  =  ( ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) ) ‘ suc  𝑐 ) ) | 
						
							| 274 | 272 273 | breq12d | ⊢ ( 𝑔  =  ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) )  →  ( ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 )  ↔  ( ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) ) ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) ) ‘ suc  𝑐 ) ) ) | 
						
							| 275 | 274 | ralbidv | ⊢ ( 𝑔  =  ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) )  →  ( ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 )  ↔  ∀ 𝑐  ∈  suc  𝑛 ( ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) ) ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) ) ‘ suc  𝑐 ) ) ) | 
						
							| 276 | 266 271 275 | 3anbi123d | ⊢ ( 𝑔  =  ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) )  →  ( ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  ( 𝑓 ‘ suc  ∅ )  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ↔  ( ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) )  Fn  suc  suc  𝑛  ∧  ( ( ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) ) ‘ ∅ )  =  ( 𝑓 ‘ suc  ∅ )  ∧  ( ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) ) ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) ) ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) ) ‘ suc  𝑐 ) ) ) ) | 
						
							| 277 | 265 276 | spcev | ⊢ ( ( ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) )  Fn  suc  suc  𝑛  ∧  ( ( ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) ) ‘ ∅ )  =  ( 𝑓 ‘ suc  ∅ )  ∧  ( ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) ) ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) ) ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( ( 𝑏  ∈  suc  suc  𝑛  ↦  ( 𝑓 ‘ suc  𝑏 ) ) ‘ suc  𝑐 ) )  →  ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  ( 𝑓 ‘ suc  ∅ )  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) ) ) | 
						
							| 278 | 219 230 240 263 277 | syl121anc | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) ) )  →  ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  ( 𝑓 ‘ suc  ∅ )  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) ) ) | 
						
							| 279 |  | simpr2l | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) ) )  →  ( 𝑓 ‘ ∅ )  =  𝑦 ) | 
						
							| 280 | 15 | fveq2d | ⊢ ( 𝑎  =  ∅  →  ( 𝑓 ‘ suc  𝑎 )  =  ( 𝑓 ‘ suc  ∅ ) ) | 
						
							| 281 | 14 280 | breq12d | ⊢ ( 𝑎  =  ∅  →  ( ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 )  ↔  ( 𝑓 ‘ ∅ ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  ∅ ) ) ) | 
						
							| 282 |  | simpr3 | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) ) )  →  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) ) | 
						
							| 283 | 281 282 225 | rspcdva | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) ) )  →  ( 𝑓 ‘ ∅ ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  ∅ ) ) | 
						
							| 284 | 279 283 | eqbrtrrd | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) ) )  →  𝑦 ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  ∅ ) ) | 
						
							| 285 |  | eqeq2 | ⊢ ( 𝑧  =  ( 𝑓 ‘ suc  ∅ )  →  ( ( 𝑔 ‘ ∅ )  =  𝑧  ↔  ( 𝑔 ‘ ∅ )  =  ( 𝑓 ‘ suc  ∅ ) ) ) | 
						
							| 286 | 285 | anbi1d | ⊢ ( 𝑧  =  ( 𝑓 ‘ suc  ∅ )  →  ( ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ↔  ( ( 𝑔 ‘ ∅ )  =  ( 𝑓 ‘ suc  ∅ )  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 ) ) ) | 
						
							| 287 | 286 | 3anbi2d | ⊢ ( 𝑧  =  ( 𝑓 ‘ suc  ∅ )  →  ( ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ↔  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  ( 𝑓 ‘ suc  ∅ )  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) ) ) ) | 
						
							| 288 | 287 | exbidv | ⊢ ( 𝑧  =  ( 𝑓 ‘ suc  ∅ )  →  ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ↔  ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  ( 𝑓 ‘ suc  ∅ )  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) ) ) ) | 
						
							| 289 |  | breq2 | ⊢ ( 𝑧  =  ( 𝑓 ‘ suc  ∅ )  →  ( 𝑦 ( 𝑅  ↾  𝐴 ) 𝑧  ↔  𝑦 ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  ∅ ) ) ) | 
						
							| 290 | 288 289 | anbi12d | ⊢ ( 𝑧  =  ( 𝑓 ‘ suc  ∅ )  →  ( ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  ↔  ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  ( 𝑓 ‘ suc  ∅ )  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  ∅ ) ) ) ) | 
						
							| 291 | 228 290 | spcev | ⊢ ( ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  ( 𝑓 ‘ suc  ∅ )  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  ∅ ) )  →  ∃ 𝑧 ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 ) ) | 
						
							| 292 | 278 284 291 | syl2anc | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) ) )  →  ∃ 𝑧 ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 ) ) | 
						
							| 293 | 292 | ex | ⊢ ( 𝑛  ∈  ω  →  ( ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  →  ∃ 𝑧 ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 ) ) ) | 
						
							| 294 | 293 | exlimdv | ⊢ ( 𝑛  ∈  ω  →  ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  →  ∃ 𝑧 ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 ) ) ) | 
						
							| 295 |  | fvex | ⊢ ( 𝑔 ‘ ∪  𝑏 )  ∈  V | 
						
							| 296 | 101 295 | ifex | ⊢ if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) )  ∈  V | 
						
							| 297 |  | eqid | ⊢ ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) )  =  ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) ) | 
						
							| 298 | 296 297 | fnmpti | ⊢ ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) )  Fn  suc  suc  suc  𝑛 | 
						
							| 299 | 298 | a1i | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  →  ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) )  Fn  suc  suc  suc  𝑛 ) | 
						
							| 300 |  | peano2 | ⊢ ( suc  𝑛  ∈  ω  →  suc  suc  𝑛  ∈  ω ) | 
						
							| 301 | 220 300 | syl | ⊢ ( 𝑛  ∈  ω  →  suc  suc  𝑛  ∈  ω ) | 
						
							| 302 | 301 | 3ad2ant1 | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  →  suc  suc  𝑛  ∈  ω ) | 
						
							| 303 |  | nnord | ⊢ ( suc  suc  𝑛  ∈  ω  →  Ord  suc  suc  𝑛 ) | 
						
							| 304 | 302 303 | syl | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  →  Ord  suc  suc  𝑛 ) | 
						
							| 305 |  | 0elsuc | ⊢ ( Ord  suc  suc  𝑛  →  ∅  ∈  suc  suc  suc  𝑛 ) | 
						
							| 306 | 304 305 | syl | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  →  ∅  ∈  suc  suc  suc  𝑛 ) | 
						
							| 307 |  | iftrue | ⊢ ( 𝑏  =  ∅  →  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) )  =  𝑦 ) | 
						
							| 308 | 307 297 101 | fvmpt | ⊢ ( ∅  ∈  suc  suc  suc  𝑛  →  ( ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) ) ‘ ∅ )  =  𝑦 ) | 
						
							| 309 | 306 308 | syl | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  →  ( ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) ) ‘ ∅ )  =  𝑦 ) | 
						
							| 310 | 264 | sucid | ⊢ suc  suc  𝑛  ∈  suc  suc  suc  𝑛 | 
						
							| 311 |  | eqeq1 | ⊢ ( 𝑏  =  suc  suc  𝑛  →  ( 𝑏  =  ∅  ↔  suc  suc  𝑛  =  ∅ ) ) | 
						
							| 312 |  | unieq | ⊢ ( 𝑏  =  suc  suc  𝑛  →  ∪  𝑏  =  ∪  suc  suc  𝑛 ) | 
						
							| 313 | 312 | fveq2d | ⊢ ( 𝑏  =  suc  suc  𝑛  →  ( 𝑔 ‘ ∪  𝑏 )  =  ( 𝑔 ‘ ∪  suc  suc  𝑛 ) ) | 
						
							| 314 | 311 313 | ifbieq2d | ⊢ ( 𝑏  =  suc  suc  𝑛  →  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) )  =  if ( suc  suc  𝑛  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  suc  suc  𝑛 ) ) ) | 
						
							| 315 |  | nsuceq0 | ⊢ suc  suc  𝑛  ≠  ∅ | 
						
							| 316 | 315 | neii | ⊢ ¬  suc  suc  𝑛  =  ∅ | 
						
							| 317 | 316 | iffalsei | ⊢ if ( suc  suc  𝑛  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  suc  suc  𝑛 ) )  =  ( 𝑔 ‘ ∪  suc  suc  𝑛 ) | 
						
							| 318 | 314 317 | eqtrdi | ⊢ ( 𝑏  =  suc  suc  𝑛  →  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) )  =  ( 𝑔 ‘ ∪  suc  suc  𝑛 ) ) | 
						
							| 319 |  | fvex | ⊢ ( 𝑔 ‘ ∪  suc  suc  𝑛 )  ∈  V | 
						
							| 320 | 318 297 319 | fvmpt | ⊢ ( suc  suc  𝑛  ∈  suc  suc  suc  𝑛  →  ( ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) ) ‘ suc  suc  𝑛 )  =  ( 𝑔 ‘ ∪  suc  suc  𝑛 ) ) | 
						
							| 321 | 310 320 | mp1i | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  →  ( ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) ) ‘ suc  suc  𝑛 )  =  ( 𝑔 ‘ ∪  suc  suc  𝑛 ) ) | 
						
							| 322 | 220 | 3ad2ant1 | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  →  suc  𝑛  ∈  ω ) | 
						
							| 323 | 322 222 | syl | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  →  Ord  suc  𝑛 ) | 
						
							| 324 |  | ordunisuc | ⊢ ( Ord  suc  𝑛  →  ∪  suc  suc  𝑛  =  suc  𝑛 ) | 
						
							| 325 | 323 324 | syl | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  →  ∪  suc  suc  𝑛  =  suc  𝑛 ) | 
						
							| 326 | 325 | fveq2d | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  →  ( 𝑔 ‘ ∪  suc  suc  𝑛 )  =  ( 𝑔 ‘ suc  𝑛 ) ) | 
						
							| 327 |  | simp22r | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  →  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 ) | 
						
							| 328 | 321 326 327 | 3eqtrd | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  →  ( ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) ) ‘ suc  suc  𝑛 )  =  𝑥 ) | 
						
							| 329 |  | simpl3 | ⊢ ( ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  ∧  𝑎  =  ∅ )  →  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 ) | 
						
							| 330 |  | iftrue | ⊢ ( 𝑎  =  ∅  →  if ( 𝑎  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑎 ) )  =  𝑦 ) | 
						
							| 331 | 330 | adantl | ⊢ ( ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  ∧  𝑎  =  ∅ )  →  if ( 𝑎  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑎 ) )  =  𝑦 ) | 
						
							| 332 |  | fveq2 | ⊢ ( 𝑎  =  ∅  →  ( 𝑔 ‘ 𝑎 )  =  ( 𝑔 ‘ ∅ ) ) | 
						
							| 333 |  | simp22l | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  →  ( 𝑔 ‘ ∅ )  =  𝑧 ) | 
						
							| 334 | 332 333 | sylan9eqr | ⊢ ( ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  ∧  𝑎  =  ∅ )  →  ( 𝑔 ‘ 𝑎 )  =  𝑧 ) | 
						
							| 335 | 329 331 334 | 3brtr4d | ⊢ ( ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  ∧  𝑎  =  ∅ )  →  if ( 𝑎  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑎 ) ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ 𝑎 ) ) | 
						
							| 336 | 335 | ex | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  →  ( 𝑎  =  ∅  →  if ( 𝑎  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑎 ) ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ 𝑎 ) ) ) | 
						
							| 337 | 336 | adantr | ⊢ ( ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  ∧  𝑎  ∈  suc  suc  𝑛 )  →  ( 𝑎  =  ∅  →  if ( 𝑎  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑎 ) ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ 𝑎 ) ) ) | 
						
							| 338 |  | ordsucelsuc | ⊢ ( Ord  suc  𝑛  →  ( 𝑏  ∈  suc  𝑛  ↔  suc  𝑏  ∈  suc  suc  𝑛 ) ) | 
						
							| 339 | 323 338 | syl | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  →  ( 𝑏  ∈  suc  𝑛  ↔  suc  𝑏  ∈  suc  suc  𝑛 ) ) | 
						
							| 340 |  | elnn | ⊢ ( ( 𝑏  ∈  suc  𝑛  ∧  suc  𝑛  ∈  ω )  →  𝑏  ∈  ω ) | 
						
							| 341 | 322 340 | sylan2 | ⊢ ( ( 𝑏  ∈  suc  𝑛  ∧  ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 ) )  →  𝑏  ∈  ω ) | 
						
							| 342 | 341 | ancoms | ⊢ ( ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  ∧  𝑏  ∈  suc  𝑛 )  →  𝑏  ∈  ω ) | 
						
							| 343 |  | nnord | ⊢ ( 𝑏  ∈  ω  →  Ord  𝑏 ) | 
						
							| 344 | 342 343 | syl | ⊢ ( ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  ∧  𝑏  ∈  suc  𝑛 )  →  Ord  𝑏 ) | 
						
							| 345 |  | ordunisuc | ⊢ ( Ord  𝑏  →  ∪  suc  𝑏  =  𝑏 ) | 
						
							| 346 | 344 345 | syl | ⊢ ( ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  ∧  𝑏  ∈  suc  𝑛 )  →  ∪  suc  𝑏  =  𝑏 ) | 
						
							| 347 | 346 | fveq2d | ⊢ ( ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  ∧  𝑏  ∈  suc  𝑛 )  →  ( 𝑔 ‘ ∪  suc  𝑏 )  =  ( 𝑔 ‘ 𝑏 ) ) | 
						
							| 348 |  | simp23 | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  →  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) ) | 
						
							| 349 |  | fveq2 | ⊢ ( 𝑐  =  𝑏  →  ( 𝑔 ‘ 𝑐 )  =  ( 𝑔 ‘ 𝑏 ) ) | 
						
							| 350 |  | suceq | ⊢ ( 𝑐  =  𝑏  →  suc  𝑐  =  suc  𝑏 ) | 
						
							| 351 | 350 | fveq2d | ⊢ ( 𝑐  =  𝑏  →  ( 𝑔 ‘ suc  𝑐 )  =  ( 𝑔 ‘ suc  𝑏 ) ) | 
						
							| 352 | 349 351 | breq12d | ⊢ ( 𝑐  =  𝑏  →  ( ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 )  ↔  ( 𝑔 ‘ 𝑏 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑏 ) ) ) | 
						
							| 353 | 352 | rspcv | ⊢ ( 𝑏  ∈  suc  𝑛  →  ( ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 )  →  ( 𝑔 ‘ 𝑏 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑏 ) ) ) | 
						
							| 354 | 348 353 | mpan9 | ⊢ ( ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  ∧  𝑏  ∈  suc  𝑛 )  →  ( 𝑔 ‘ 𝑏 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑏 ) ) | 
						
							| 355 | 347 354 | eqbrtrd | ⊢ ( ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  ∧  𝑏  ∈  suc  𝑛 )  →  ( 𝑔 ‘ ∪  suc  𝑏 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑏 ) ) | 
						
							| 356 | 355 | ex | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  →  ( 𝑏  ∈  suc  𝑛  →  ( 𝑔 ‘ ∪  suc  𝑏 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑏 ) ) ) | 
						
							| 357 | 339 356 | sylbird | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  →  ( suc  𝑏  ∈  suc  suc  𝑛  →  ( 𝑔 ‘ ∪  suc  𝑏 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑏 ) ) ) | 
						
							| 358 | 357 | imp | ⊢ ( ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  ∧  suc  𝑏  ∈  suc  suc  𝑛 )  →  ( 𝑔 ‘ ∪  suc  𝑏 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑏 ) ) | 
						
							| 359 |  | eleq1 | ⊢ ( 𝑎  =  suc  𝑏  →  ( 𝑎  ∈  suc  suc  𝑛  ↔  suc  𝑏  ∈  suc  suc  𝑛 ) ) | 
						
							| 360 | 359 | anbi2d | ⊢ ( 𝑎  =  suc  𝑏  →  ( ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  ∧  𝑎  ∈  suc  suc  𝑛 )  ↔  ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  ∧  suc  𝑏  ∈  suc  suc  𝑛 ) ) ) | 
						
							| 361 |  | eqeq1 | ⊢ ( 𝑎  =  suc  𝑏  →  ( 𝑎  =  ∅  ↔  suc  𝑏  =  ∅ ) ) | 
						
							| 362 |  | unieq | ⊢ ( 𝑎  =  suc  𝑏  →  ∪  𝑎  =  ∪  suc  𝑏 ) | 
						
							| 363 | 362 | fveq2d | ⊢ ( 𝑎  =  suc  𝑏  →  ( 𝑔 ‘ ∪  𝑎 )  =  ( 𝑔 ‘ ∪  suc  𝑏 ) ) | 
						
							| 364 | 361 363 | ifbieq2d | ⊢ ( 𝑎  =  suc  𝑏  →  if ( 𝑎  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑎 ) )  =  if ( suc  𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  suc  𝑏 ) ) ) | 
						
							| 365 |  | nsuceq0 | ⊢ suc  𝑏  ≠  ∅ | 
						
							| 366 | 365 | neii | ⊢ ¬  suc  𝑏  =  ∅ | 
						
							| 367 | 366 | iffalsei | ⊢ if ( suc  𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  suc  𝑏 ) )  =  ( 𝑔 ‘ ∪  suc  𝑏 ) | 
						
							| 368 | 364 367 | eqtrdi | ⊢ ( 𝑎  =  suc  𝑏  →  if ( 𝑎  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑎 ) )  =  ( 𝑔 ‘ ∪  suc  𝑏 ) ) | 
						
							| 369 |  | fveq2 | ⊢ ( 𝑎  =  suc  𝑏  →  ( 𝑔 ‘ 𝑎 )  =  ( 𝑔 ‘ suc  𝑏 ) ) | 
						
							| 370 | 368 369 | breq12d | ⊢ ( 𝑎  =  suc  𝑏  →  ( if ( 𝑎  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑎 ) ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ 𝑎 )  ↔  ( 𝑔 ‘ ∪  suc  𝑏 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑏 ) ) ) | 
						
							| 371 | 360 370 | imbi12d | ⊢ ( 𝑎  =  suc  𝑏  →  ( ( ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  ∧  𝑎  ∈  suc  suc  𝑛 )  →  if ( 𝑎  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑎 ) ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ 𝑎 ) )  ↔  ( ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  ∧  suc  𝑏  ∈  suc  suc  𝑛 )  →  ( 𝑔 ‘ ∪  suc  𝑏 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑏 ) ) ) ) | 
						
							| 372 | 358 371 | mpbiri | ⊢ ( 𝑎  =  suc  𝑏  →  ( ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  ∧  𝑎  ∈  suc  suc  𝑛 )  →  if ( 𝑎  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑎 ) ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ 𝑎 ) ) ) | 
						
							| 373 | 372 | com12 | ⊢ ( ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  ∧  𝑎  ∈  suc  suc  𝑛 )  →  ( 𝑎  =  suc  𝑏  →  if ( 𝑎  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑎 ) ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ 𝑎 ) ) ) | 
						
							| 374 | 373 | rexlimdvw | ⊢ ( ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  ∧  𝑎  ∈  suc  suc  𝑛 )  →  ( ∃ 𝑏  ∈  ω 𝑎  =  suc  𝑏  →  if ( 𝑎  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑎 ) ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ 𝑎 ) ) ) | 
						
							| 375 |  | elnn | ⊢ ( ( 𝑎  ∈  suc  suc  𝑛  ∧  suc  suc  𝑛  ∈  ω )  →  𝑎  ∈  ω ) | 
						
							| 376 | 375 | ancoms | ⊢ ( ( suc  suc  𝑛  ∈  ω  ∧  𝑎  ∈  suc  suc  𝑛 )  →  𝑎  ∈  ω ) | 
						
							| 377 | 302 376 | sylan | ⊢ ( ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  ∧  𝑎  ∈  suc  suc  𝑛 )  →  𝑎  ∈  ω ) | 
						
							| 378 |  | nn0suc | ⊢ ( 𝑎  ∈  ω  →  ( 𝑎  =  ∅  ∨  ∃ 𝑏  ∈  ω 𝑎  =  suc  𝑏 ) ) | 
						
							| 379 | 377 378 | syl | ⊢ ( ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  ∧  𝑎  ∈  suc  suc  𝑛 )  →  ( 𝑎  =  ∅  ∨  ∃ 𝑏  ∈  ω 𝑎  =  suc  𝑏 ) ) | 
						
							| 380 | 337 374 379 | mpjaod | ⊢ ( ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  ∧  𝑎  ∈  suc  suc  𝑛 )  →  if ( 𝑎  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑎 ) ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ 𝑎 ) ) | 
						
							| 381 |  | elelsuc | ⊢ ( 𝑎  ∈  suc  suc  𝑛  →  𝑎  ∈  suc  suc  suc  𝑛 ) | 
						
							| 382 |  | eqeq1 | ⊢ ( 𝑏  =  𝑎  →  ( 𝑏  =  ∅  ↔  𝑎  =  ∅ ) ) | 
						
							| 383 |  | unieq | ⊢ ( 𝑏  =  𝑎  →  ∪  𝑏  =  ∪  𝑎 ) | 
						
							| 384 | 383 | fveq2d | ⊢ ( 𝑏  =  𝑎  →  ( 𝑔 ‘ ∪  𝑏 )  =  ( 𝑔 ‘ ∪  𝑎 ) ) | 
						
							| 385 | 382 384 | ifbieq2d | ⊢ ( 𝑏  =  𝑎  →  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) )  =  if ( 𝑎  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑎 ) ) ) | 
						
							| 386 |  | fvex | ⊢ ( 𝑔 ‘ ∪  𝑎 )  ∈  V | 
						
							| 387 | 101 386 | ifex | ⊢ if ( 𝑎  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑎 ) )  ∈  V | 
						
							| 388 | 385 297 387 | fvmpt | ⊢ ( 𝑎  ∈  suc  suc  suc  𝑛  →  ( ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) ) ‘ 𝑎 )  =  if ( 𝑎  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑎 ) ) ) | 
						
							| 389 | 381 388 | syl | ⊢ ( 𝑎  ∈  suc  suc  𝑛  →  ( ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) ) ‘ 𝑎 )  =  if ( 𝑎  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑎 ) ) ) | 
						
							| 390 | 389 | adantl | ⊢ ( ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  ∧  𝑎  ∈  suc  suc  𝑛 )  →  ( ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) ) ‘ 𝑎 )  =  if ( 𝑎  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑎 ) ) ) | 
						
							| 391 |  | ordsucelsuc | ⊢ ( Ord  suc  suc  𝑛  →  ( 𝑎  ∈  suc  suc  𝑛  ↔  suc  𝑎  ∈  suc  suc  suc  𝑛 ) ) | 
						
							| 392 | 304 391 | syl | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  →  ( 𝑎  ∈  suc  suc  𝑛  ↔  suc  𝑎  ∈  suc  suc  suc  𝑛 ) ) | 
						
							| 393 | 392 | biimpa | ⊢ ( ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  ∧  𝑎  ∈  suc  suc  𝑛 )  →  suc  𝑎  ∈  suc  suc  suc  𝑛 ) | 
						
							| 394 |  | eqeq1 | ⊢ ( 𝑏  =  suc  𝑎  →  ( 𝑏  =  ∅  ↔  suc  𝑎  =  ∅ ) ) | 
						
							| 395 |  | unieq | ⊢ ( 𝑏  =  suc  𝑎  →  ∪  𝑏  =  ∪  suc  𝑎 ) | 
						
							| 396 | 395 | fveq2d | ⊢ ( 𝑏  =  suc  𝑎  →  ( 𝑔 ‘ ∪  𝑏 )  =  ( 𝑔 ‘ ∪  suc  𝑎 ) ) | 
						
							| 397 | 394 396 | ifbieq2d | ⊢ ( 𝑏  =  suc  𝑎  →  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) )  =  if ( suc  𝑎  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  suc  𝑎 ) ) ) | 
						
							| 398 |  | nsuceq0 | ⊢ suc  𝑎  ≠  ∅ | 
						
							| 399 | 398 | neii | ⊢ ¬  suc  𝑎  =  ∅ | 
						
							| 400 | 399 | iffalsei | ⊢ if ( suc  𝑎  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  suc  𝑎 ) )  =  ( 𝑔 ‘ ∪  suc  𝑎 ) | 
						
							| 401 | 397 400 | eqtrdi | ⊢ ( 𝑏  =  suc  𝑎  →  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) )  =  ( 𝑔 ‘ ∪  suc  𝑎 ) ) | 
						
							| 402 |  | fvex | ⊢ ( 𝑔 ‘ ∪  suc  𝑎 )  ∈  V | 
						
							| 403 | 401 297 402 | fvmpt | ⊢ ( suc  𝑎  ∈  suc  suc  suc  𝑛  →  ( ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) ) ‘ suc  𝑎 )  =  ( 𝑔 ‘ ∪  suc  𝑎 ) ) | 
						
							| 404 | 393 403 | syl | ⊢ ( ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  ∧  𝑎  ∈  suc  suc  𝑛 )  →  ( ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) ) ‘ suc  𝑎 )  =  ( 𝑔 ‘ ∪  suc  𝑎 ) ) | 
						
							| 405 |  | nnord | ⊢ ( 𝑎  ∈  ω  →  Ord  𝑎 ) | 
						
							| 406 | 377 405 | syl | ⊢ ( ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  ∧  𝑎  ∈  suc  suc  𝑛 )  →  Ord  𝑎 ) | 
						
							| 407 |  | ordunisuc | ⊢ ( Ord  𝑎  →  ∪  suc  𝑎  =  𝑎 ) | 
						
							| 408 | 406 407 | syl | ⊢ ( ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  ∧  𝑎  ∈  suc  suc  𝑛 )  →  ∪  suc  𝑎  =  𝑎 ) | 
						
							| 409 | 408 | fveq2d | ⊢ ( ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  ∧  𝑎  ∈  suc  suc  𝑛 )  →  ( 𝑔 ‘ ∪  suc  𝑎 )  =  ( 𝑔 ‘ 𝑎 ) ) | 
						
							| 410 | 404 409 | eqtrd | ⊢ ( ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  ∧  𝑎  ∈  suc  suc  𝑛 )  →  ( ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) ) ‘ suc  𝑎 )  =  ( 𝑔 ‘ 𝑎 ) ) | 
						
							| 411 | 380 390 410 | 3brtr4d | ⊢ ( ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  ∧  𝑎  ∈  suc  suc  𝑛 )  →  ( ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) ) ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) ) ‘ suc  𝑎 ) ) | 
						
							| 412 | 411 | ralrimiva | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  →  ∀ 𝑎  ∈  suc  suc  𝑛 ( ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) ) ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) ) ‘ suc  𝑎 ) ) | 
						
							| 413 | 264 | sucex | ⊢ suc  suc  suc  𝑛  ∈  V | 
						
							| 414 | 413 | mptex | ⊢ ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) )  ∈  V | 
						
							| 415 |  | fneq1 | ⊢ ( 𝑓  =  ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) )  →  ( 𝑓  Fn  suc  suc  suc  𝑛  ↔  ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) )  Fn  suc  suc  suc  𝑛 ) ) | 
						
							| 416 |  | fveq1 | ⊢ ( 𝑓  =  ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) )  →  ( 𝑓 ‘ ∅ )  =  ( ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) ) ‘ ∅ ) ) | 
						
							| 417 | 416 | eqeq1d | ⊢ ( 𝑓  =  ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) )  →  ( ( 𝑓 ‘ ∅ )  =  𝑦  ↔  ( ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) ) ‘ ∅ )  =  𝑦 ) ) | 
						
							| 418 |  | fveq1 | ⊢ ( 𝑓  =  ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) )  →  ( 𝑓 ‘ suc  suc  𝑛 )  =  ( ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) ) ‘ suc  suc  𝑛 ) ) | 
						
							| 419 | 418 | eqeq1d | ⊢ ( 𝑓  =  ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) )  →  ( ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑥  ↔  ( ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) ) ‘ suc  suc  𝑛 )  =  𝑥 ) ) | 
						
							| 420 | 417 419 | anbi12d | ⊢ ( 𝑓  =  ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) )  →  ( ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑥 )  ↔  ( ( ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) ) ‘ ∅ )  =  𝑦  ∧  ( ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) ) ‘ suc  suc  𝑛 )  =  𝑥 ) ) ) | 
						
							| 421 |  | fveq1 | ⊢ ( 𝑓  =  ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) )  →  ( 𝑓 ‘ 𝑎 )  =  ( ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) ) ‘ 𝑎 ) ) | 
						
							| 422 |  | fveq1 | ⊢ ( 𝑓  =  ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) )  →  ( 𝑓 ‘ suc  𝑎 )  =  ( ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) ) ‘ suc  𝑎 ) ) | 
						
							| 423 | 421 422 | breq12d | ⊢ ( 𝑓  =  ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) )  →  ( ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 )  ↔  ( ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) ) ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) ) ‘ suc  𝑎 ) ) ) | 
						
							| 424 | 423 | ralbidv | ⊢ ( 𝑓  =  ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) )  →  ( ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 )  ↔  ∀ 𝑎  ∈  suc  suc  𝑛 ( ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) ) ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) ) ‘ suc  𝑎 ) ) ) | 
						
							| 425 | 415 420 424 | 3anbi123d | ⊢ ( 𝑓  =  ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) )  →  ( ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  ( ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) )  Fn  suc  suc  suc  𝑛  ∧  ( ( ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) ) ‘ ∅ )  =  𝑦  ∧  ( ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) ) ‘ suc  suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) ) ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) ) ‘ suc  𝑎 ) ) ) ) | 
						
							| 426 | 414 425 | spcev | ⊢ ( ( ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) )  Fn  suc  suc  suc  𝑛  ∧  ( ( ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) ) ‘ ∅ )  =  𝑦  ∧  ( ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) ) ‘ suc  suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) ) ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( ( 𝑏  ∈  suc  suc  suc  𝑛  ↦  if ( 𝑏  =  ∅ ,  𝑦 ,  ( 𝑔 ‘ ∪  𝑏 ) ) ) ‘ suc  𝑎 ) )  →  ∃ 𝑓 ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) ) ) | 
						
							| 427 | 299 309 328 412 426 | syl121anc | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  →  ∃ 𝑓 ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) ) ) | 
						
							| 428 | 427 | 3exp | ⊢ ( 𝑛  ∈  ω  →  ( ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  →  ( 𝑦 ( 𝑅  ↾  𝐴 ) 𝑧  →  ∃ 𝑓 ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) ) ) ) ) | 
						
							| 429 | 428 | exlimdv | ⊢ ( 𝑛  ∈  ω  →  ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  →  ( 𝑦 ( 𝑅  ↾  𝐴 ) 𝑧  →  ∃ 𝑓 ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) ) ) ) ) | 
						
							| 430 | 429 | impd | ⊢ ( 𝑛  ∈  ω  →  ( ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  →  ∃ 𝑓 ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) ) ) ) | 
						
							| 431 | 430 | exlimdv | ⊢ ( 𝑛  ∈  ω  →  ( ∃ 𝑧 ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  →  ∃ 𝑓 ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) ) ) ) | 
						
							| 432 | 294 431 | impbid | ⊢ ( 𝑛  ∈  ω  →  ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  ∃ 𝑧 ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 ) ) ) | 
						
							| 433 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 434 | 433 | brresi | ⊢ ( 𝑦 ( 𝑅  ↾  𝐴 ) 𝑧  ↔  ( 𝑦  ∈  𝐴  ∧  𝑦 𝑅 𝑧 ) ) | 
						
							| 435 | 434 | anbi2i | ⊢ ( ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  ↔  ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦 𝑅 𝑧 ) ) ) | 
						
							| 436 | 435 | exbii | ⊢ ( ∃ 𝑧 ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑧 )  ↔  ∃ 𝑧 ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦 𝑅 𝑧 ) ) ) | 
						
							| 437 | 432 436 | bitrdi | ⊢ ( 𝑛  ∈  ω  →  ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  ∃ 𝑧 ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑥 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦 𝑅 𝑧 ) ) ) ) | 
						
							| 438 | 215 437 | vtoclg | ⊢ ( 𝑋  ∈  𝐴  →  ( 𝑛  ∈  ω  →  ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  ∃ 𝑧 ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦 𝑅 𝑧 ) ) ) ) ) | 
						
							| 439 | 438 | impcom | ⊢ ( ( 𝑛  ∈  ω  ∧  𝑋  ∈  𝐴 )  →  ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  ∃ 𝑧 ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦 𝑅 𝑧 ) ) ) ) | 
						
							| 440 | 439 | adantrl | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑅  Se  𝐴  ∧  𝑋  ∈  𝐴 ) )  →  ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  ∃ 𝑧 ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦 𝑅 𝑧 ) ) ) ) | 
						
							| 441 | 440 | 3adant3 | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑅  Se  𝐴  ∧  𝑋  ∈  𝐴 )  ∧  ∀ 𝑧 ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ↔  𝑧  ∈  ( 𝐹 ‘ 𝑛 ) ) )  →  ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  ∃ 𝑧 ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦 𝑅 𝑧 ) ) ) ) | 
						
							| 442 | 175 203 441 | 3bitr4rd | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑅  Se  𝐴  ∧  𝑋  ∈  𝐴 )  ∧  ∀ 𝑧 ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ↔  𝑧  ∈  ( 𝐹 ‘ 𝑛 ) ) )  →  ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  𝑦  ∈  ( 𝐹 ‘ suc  𝑛 ) ) ) | 
						
							| 443 | 442 | alrimiv | ⊢ ( ( 𝑛  ∈  ω  ∧  ( 𝑅  Se  𝐴  ∧  𝑋  ∈  𝐴 )  ∧  ∀ 𝑧 ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ↔  𝑧  ∈  ( 𝐹 ‘ 𝑛 ) ) )  →  ∀ 𝑦 ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  𝑦  ∈  ( 𝐹 ‘ suc  𝑛 ) ) ) | 
						
							| 444 | 443 | 3exp | ⊢ ( 𝑛  ∈  ω  →  ( ( 𝑅  Se  𝐴  ∧  𝑋  ∈  𝐴 )  →  ( ∀ 𝑧 ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ↔  𝑧  ∈  ( 𝐹 ‘ 𝑛 ) )  →  ∀ 𝑦 ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  𝑦  ∈  ( 𝐹 ‘ suc  𝑛 ) ) ) ) ) | 
						
							| 445 | 444 | a2d | ⊢ ( 𝑛  ∈  ω  →  ( ( ( 𝑅  Se  𝐴  ∧  𝑋  ∈  𝐴 )  →  ∀ 𝑧 ( ∃ 𝑔 ( 𝑔  Fn  suc  suc  𝑛  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑐  ∈  suc  𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅  ↾  𝐴 ) ( 𝑔 ‘ suc  𝑐 ) )  ↔  𝑧  ∈  ( 𝐹 ‘ 𝑛 ) ) )  →  ( ( 𝑅  Se  𝐴  ∧  𝑋  ∈  𝐴 )  →  ∀ 𝑦 ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  suc  𝑛 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  suc  𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  𝑦  ∈  ( 𝐹 ‘ suc  𝑛 ) ) ) ) ) | 
						
							| 446 | 27 68 82 96 164 445 | finds | ⊢ ( 𝑁  ∈  ω  →  ( ( 𝑅  Se  𝐴  ∧  𝑋  ∈  𝐴 )  →  ∀ 𝑦 ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  𝑁  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  𝑁 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  𝑁 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  𝑦  ∈  ( 𝐹 ‘ 𝑁 ) ) ) ) | 
						
							| 447 | 446 | 3impib | ⊢ ( ( 𝑁  ∈  ω  ∧  𝑅  Se  𝐴  ∧  𝑋  ∈  𝐴 )  →  ∀ 𝑦 ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  𝑁  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  𝑁 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  𝑁 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  𝑦  ∈  ( 𝐹 ‘ 𝑁 ) ) ) | 
						
							| 448 | 447 | 19.21bi | ⊢ ( ( 𝑁  ∈  ω  ∧  𝑅  Se  𝐴  ∧  𝑋  ∈  𝐴 )  →  ( ∃ 𝑓 ( 𝑓  Fn  suc  suc  𝑁  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑦  ∧  ( 𝑓 ‘ suc  𝑁 )  =  𝑋 )  ∧  ∀ 𝑎  ∈  suc  𝑁 ( 𝑓 ‘ 𝑎 ) ( 𝑅  ↾  𝐴 ) ( 𝑓 ‘ suc  𝑎 ) )  ↔  𝑦  ∈  ( 𝐹 ‘ 𝑁 ) ) ) |