| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relco | ⊢ Rel  ( t++ 𝑅  ∘  t++ 𝑅 ) | 
						
							| 2 |  | eldifi | ⊢ ( 𝑛  ∈  ( ω  ∖  1o )  →  𝑛  ∈  ω ) | 
						
							| 3 |  | eldifi | ⊢ ( 𝑚  ∈  ( ω  ∖  1o )  →  𝑚  ∈  ω ) | 
						
							| 4 |  | nnacl | ⊢ ( ( 𝑛  ∈  ω  ∧  𝑚  ∈  ω )  →  ( 𝑛  +o  𝑚 )  ∈  ω ) | 
						
							| 5 | 2 3 4 | syl2an | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  →  ( 𝑛  +o  𝑚 )  ∈  ω ) | 
						
							| 6 |  | eldif | ⊢ ( 𝑛  ∈  ( ω  ∖  1o )  ↔  ( 𝑛  ∈  ω  ∧  ¬  𝑛  ∈  1o ) ) | 
						
							| 7 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 8 | 7 | onordi | ⊢ Ord  1o | 
						
							| 9 |  | nnord | ⊢ ( 𝑛  ∈  ω  →  Ord  𝑛 ) | 
						
							| 10 |  | ordtri1 | ⊢ ( ( Ord  1o  ∧  Ord  𝑛 )  →  ( 1o  ⊆  𝑛  ↔  ¬  𝑛  ∈  1o ) ) | 
						
							| 11 | 8 9 10 | sylancr | ⊢ ( 𝑛  ∈  ω  →  ( 1o  ⊆  𝑛  ↔  ¬  𝑛  ∈  1o ) ) | 
						
							| 12 | 11 | biimpar | ⊢ ( ( 𝑛  ∈  ω  ∧  ¬  𝑛  ∈  1o )  →  1o  ⊆  𝑛 ) | 
						
							| 13 | 6 12 | sylbi | ⊢ ( 𝑛  ∈  ( ω  ∖  1o )  →  1o  ⊆  𝑛 ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  →  1o  ⊆  𝑛 ) | 
						
							| 15 |  | nnaword1 | ⊢ ( ( 𝑛  ∈  ω  ∧  𝑚  ∈  ω )  →  𝑛  ⊆  ( 𝑛  +o  𝑚 ) ) | 
						
							| 16 | 2 3 15 | syl2an | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  →  𝑛  ⊆  ( 𝑛  +o  𝑚 ) ) | 
						
							| 17 | 14 16 | sstrd | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  →  1o  ⊆  ( 𝑛  +o  𝑚 ) ) | 
						
							| 18 |  | nnord | ⊢ ( ( 𝑛  +o  𝑚 )  ∈  ω  →  Ord  ( 𝑛  +o  𝑚 ) ) | 
						
							| 19 | 5 18 | syl | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  →  Ord  ( 𝑛  +o  𝑚 ) ) | 
						
							| 20 |  | ordtri1 | ⊢ ( ( Ord  1o  ∧  Ord  ( 𝑛  +o  𝑚 ) )  →  ( 1o  ⊆  ( 𝑛  +o  𝑚 )  ↔  ¬  ( 𝑛  +o  𝑚 )  ∈  1o ) ) | 
						
							| 21 | 8 19 20 | sylancr | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  →  ( 1o  ⊆  ( 𝑛  +o  𝑚 )  ↔  ¬  ( 𝑛  +o  𝑚 )  ∈  1o ) ) | 
						
							| 22 | 17 21 | mpbid | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  →  ¬  ( 𝑛  +o  𝑚 )  ∈  1o ) | 
						
							| 23 | 5 22 | eldifd | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  →  ( 𝑛  +o  𝑚 )  ∈  ( ω  ∖  1o ) ) | 
						
							| 24 |  | 0elsuc | ⊢ ( Ord  ( 𝑛  +o  𝑚 )  →  ∅  ∈  suc  ( 𝑛  +o  𝑚 ) ) | 
						
							| 25 | 19 24 | syl | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  →  ∅  ∈  suc  ( 𝑛  +o  𝑚 ) ) | 
						
							| 26 |  | eleq1 | ⊢ ( 𝑝  =  ∅  →  ( 𝑝  ∈  suc  𝑛  ↔  ∅  ∈  suc  𝑛 ) ) | 
						
							| 27 |  | fveq2 | ⊢ ( 𝑝  =  ∅  →  ( 𝑓 ‘ 𝑝 )  =  ( 𝑓 ‘ ∅ ) ) | 
						
							| 28 |  | eqeq2 | ⊢ ( 𝑝  =  ∅  →  ( ( 𝑛  +o  𝑞 )  =  𝑝  ↔  ( 𝑛  +o  𝑞 )  =  ∅ ) ) | 
						
							| 29 | 28 | riotabidv | ⊢ ( 𝑝  =  ∅  →  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 )  =  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  ∅ ) ) | 
						
							| 30 | 29 | fveq2d | ⊢ ( 𝑝  =  ∅  →  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) )  =  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  ∅ ) ) ) | 
						
							| 31 | 26 27 30 | ifbieq12d | ⊢ ( 𝑝  =  ∅  →  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) )  =  if ( ∅  ∈  suc  𝑛 ,  ( 𝑓 ‘ ∅ ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  ∅ ) ) ) ) | 
						
							| 32 |  | eqid | ⊢ ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) )  =  ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) ) | 
						
							| 33 |  | fvex | ⊢ ( 𝑓 ‘ ∅ )  ∈  V | 
						
							| 34 |  | fvex | ⊢ ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  ∅ ) )  ∈  V | 
						
							| 35 | 33 34 | ifex | ⊢ if ( ∅  ∈  suc  𝑛 ,  ( 𝑓 ‘ ∅ ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  ∅ ) ) )  ∈  V | 
						
							| 36 | 31 32 35 | fvmpt | ⊢ ( ∅  ∈  suc  ( 𝑛  +o  𝑚 )  →  ( ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) ) ‘ ∅ )  =  if ( ∅  ∈  suc  𝑛 ,  ( 𝑓 ‘ ∅ ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  ∅ ) ) ) ) | 
						
							| 37 | 25 36 | syl | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  →  ( ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) ) ‘ ∅ )  =  if ( ∅  ∈  suc  𝑛 ,  ( 𝑓 ‘ ∅ ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  ∅ ) ) ) ) | 
						
							| 38 | 2 | adantr | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  →  𝑛  ∈  ω ) | 
						
							| 39 | 38 9 | syl | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  →  Ord  𝑛 ) | 
						
							| 40 |  | 0elsuc | ⊢ ( Ord  𝑛  →  ∅  ∈  suc  𝑛 ) | 
						
							| 41 | 39 40 | syl | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  →  ∅  ∈  suc  𝑛 ) | 
						
							| 42 | 41 | iftrued | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  →  if ( ∅  ∈  suc  𝑛 ,  ( 𝑓 ‘ ∅ ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  ∅ ) ) )  =  ( 𝑓 ‘ ∅ ) ) | 
						
							| 43 | 37 42 | eqtrd | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  →  ( ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) ) ‘ ∅ )  =  ( 𝑓 ‘ ∅ ) ) | 
						
							| 44 |  | simpl2l | ⊢ ( ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) )  →  ( 𝑓 ‘ ∅ )  =  𝑥 ) | 
						
							| 45 | 43 44 | sylan9eq | ⊢ ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  →  ( ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) ) ‘ ∅ )  =  𝑥 ) | 
						
							| 46 |  | ovex | ⊢ ( 𝑛  +o  𝑚 )  ∈  V | 
						
							| 47 | 46 | sucid | ⊢ ( 𝑛  +o  𝑚 )  ∈  suc  ( 𝑛  +o  𝑚 ) | 
						
							| 48 |  | eleq1 | ⊢ ( 𝑝  =  ( 𝑛  +o  𝑚 )  →  ( 𝑝  ∈  suc  𝑛  ↔  ( 𝑛  +o  𝑚 )  ∈  suc  𝑛 ) ) | 
						
							| 49 |  | fveq2 | ⊢ ( 𝑝  =  ( 𝑛  +o  𝑚 )  →  ( 𝑓 ‘ 𝑝 )  =  ( 𝑓 ‘ ( 𝑛  +o  𝑚 ) ) ) | 
						
							| 50 |  | eqeq2 | ⊢ ( 𝑝  =  ( 𝑛  +o  𝑚 )  →  ( ( 𝑛  +o  𝑞 )  =  𝑝  ↔  ( 𝑛  +o  𝑞 )  =  ( 𝑛  +o  𝑚 ) ) ) | 
						
							| 51 | 50 | riotabidv | ⊢ ( 𝑝  =  ( 𝑛  +o  𝑚 )  →  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 )  =  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  ( 𝑛  +o  𝑚 ) ) ) | 
						
							| 52 | 51 | fveq2d | ⊢ ( 𝑝  =  ( 𝑛  +o  𝑚 )  →  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) )  =  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  ( 𝑛  +o  𝑚 ) ) ) ) | 
						
							| 53 | 48 49 52 | ifbieq12d | ⊢ ( 𝑝  =  ( 𝑛  +o  𝑚 )  →  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) )  =  if ( ( 𝑛  +o  𝑚 )  ∈  suc  𝑛 ,  ( 𝑓 ‘ ( 𝑛  +o  𝑚 ) ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  ( 𝑛  +o  𝑚 ) ) ) ) ) | 
						
							| 54 |  | fvex | ⊢ ( 𝑓 ‘ ( 𝑛  +o  𝑚 ) )  ∈  V | 
						
							| 55 |  | fvex | ⊢ ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  ( 𝑛  +o  𝑚 ) ) )  ∈  V | 
						
							| 56 | 54 55 | ifex | ⊢ if ( ( 𝑛  +o  𝑚 )  ∈  suc  𝑛 ,  ( 𝑓 ‘ ( 𝑛  +o  𝑚 ) ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  ( 𝑛  +o  𝑚 ) ) ) )  ∈  V | 
						
							| 57 | 53 32 56 | fvmpt | ⊢ ( ( 𝑛  +o  𝑚 )  ∈  suc  ( 𝑛  +o  𝑚 )  →  ( ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) ) ‘ ( 𝑛  +o  𝑚 ) )  =  if ( ( 𝑛  +o  𝑚 )  ∈  suc  𝑛 ,  ( 𝑓 ‘ ( 𝑛  +o  𝑚 ) ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  ( 𝑛  +o  𝑚 ) ) ) ) ) | 
						
							| 58 | 47 57 | mp1i | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  →  ( ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) ) ‘ ( 𝑛  +o  𝑚 ) )  =  if ( ( 𝑛  +o  𝑚 )  ∈  suc  𝑛 ,  ( 𝑓 ‘ ( 𝑛  +o  𝑚 ) ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  ( 𝑛  +o  𝑚 ) ) ) ) ) | 
						
							| 59 |  | df-1o | ⊢ 1o  =  suc  ∅ | 
						
							| 60 | 59 | difeq2i | ⊢ ( ω  ∖  1o )  =  ( ω  ∖  suc  ∅ ) | 
						
							| 61 | 60 | eleq2i | ⊢ ( 𝑛  ∈  ( ω  ∖  1o )  ↔  𝑛  ∈  ( ω  ∖  suc  ∅ ) ) | 
						
							| 62 |  | peano1 | ⊢ ∅  ∈  ω | 
						
							| 63 |  | eldifsucnn | ⊢ ( ∅  ∈  ω  →  ( 𝑛  ∈  ( ω  ∖  suc  ∅ )  ↔  ∃ 𝑥  ∈  ( ω  ∖  ∅ ) 𝑛  =  suc  𝑥 ) ) | 
						
							| 64 | 62 63 | ax-mp | ⊢ ( 𝑛  ∈  ( ω  ∖  suc  ∅ )  ↔  ∃ 𝑥  ∈  ( ω  ∖  ∅ ) 𝑛  =  suc  𝑥 ) | 
						
							| 65 |  | dif0 | ⊢ ( ω  ∖  ∅ )  =  ω | 
						
							| 66 | 65 | rexeqi | ⊢ ( ∃ 𝑥  ∈  ( ω  ∖  ∅ ) 𝑛  =  suc  𝑥  ↔  ∃ 𝑥  ∈  ω 𝑛  =  suc  𝑥 ) | 
						
							| 67 | 61 64 66 | 3bitri | ⊢ ( 𝑛  ∈  ( ω  ∖  1o )  ↔  ∃ 𝑥  ∈  ω 𝑛  =  suc  𝑥 ) | 
						
							| 68 | 60 | eleq2i | ⊢ ( 𝑚  ∈  ( ω  ∖  1o )  ↔  𝑚  ∈  ( ω  ∖  suc  ∅ ) ) | 
						
							| 69 |  | eldifsucnn | ⊢ ( ∅  ∈  ω  →  ( 𝑚  ∈  ( ω  ∖  suc  ∅ )  ↔  ∃ 𝑦  ∈  ( ω  ∖  ∅ ) 𝑚  =  suc  𝑦 ) ) | 
						
							| 70 | 62 69 | ax-mp | ⊢ ( 𝑚  ∈  ( ω  ∖  suc  ∅ )  ↔  ∃ 𝑦  ∈  ( ω  ∖  ∅ ) 𝑚  =  suc  𝑦 ) | 
						
							| 71 | 65 | rexeqi | ⊢ ( ∃ 𝑦  ∈  ( ω  ∖  ∅ ) 𝑚  =  suc  𝑦  ↔  ∃ 𝑦  ∈  ω 𝑚  =  suc  𝑦 ) | 
						
							| 72 | 68 70 71 | 3bitri | ⊢ ( 𝑚  ∈  ( ω  ∖  1o )  ↔  ∃ 𝑦  ∈  ω 𝑚  =  suc  𝑦 ) | 
						
							| 73 | 67 72 | anbi12i | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ↔  ( ∃ 𝑥  ∈  ω 𝑛  =  suc  𝑥  ∧  ∃ 𝑦  ∈  ω 𝑚  =  suc  𝑦 ) ) | 
						
							| 74 |  | reeanv | ⊢ ( ∃ 𝑥  ∈  ω ∃ 𝑦  ∈  ω ( 𝑛  =  suc  𝑥  ∧  𝑚  =  suc  𝑦 )  ↔  ( ∃ 𝑥  ∈  ω 𝑛  =  suc  𝑥  ∧  ∃ 𝑦  ∈  ω 𝑚  =  suc  𝑦 ) ) | 
						
							| 75 | 73 74 | bitr4i | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ↔  ∃ 𝑥  ∈  ω ∃ 𝑦  ∈  ω ( 𝑛  =  suc  𝑥  ∧  𝑚  =  suc  𝑦 ) ) | 
						
							| 76 |  | peano2 | ⊢ ( 𝑥  ∈  ω  →  suc  𝑥  ∈  ω ) | 
						
							| 77 |  | nnaword1 | ⊢ ( ( suc  𝑥  ∈  ω  ∧  𝑦  ∈  ω )  →  suc  𝑥  ⊆  ( suc  𝑥  +o  𝑦 ) ) | 
						
							| 78 | 76 77 | sylan | ⊢ ( ( 𝑥  ∈  ω  ∧  𝑦  ∈  ω )  →  suc  𝑥  ⊆  ( suc  𝑥  +o  𝑦 ) ) | 
						
							| 79 | 76 | adantr | ⊢ ( ( 𝑥  ∈  ω  ∧  𝑦  ∈  ω )  →  suc  𝑥  ∈  ω ) | 
						
							| 80 |  | nnord | ⊢ ( suc  𝑥  ∈  ω  →  Ord  suc  𝑥 ) | 
						
							| 81 | 79 80 | syl | ⊢ ( ( 𝑥  ∈  ω  ∧  𝑦  ∈  ω )  →  Ord  suc  𝑥 ) | 
						
							| 82 |  | nnacl | ⊢ ( ( suc  𝑥  ∈  ω  ∧  𝑦  ∈  ω )  →  ( suc  𝑥  +o  𝑦 )  ∈  ω ) | 
						
							| 83 | 76 82 | sylan | ⊢ ( ( 𝑥  ∈  ω  ∧  𝑦  ∈  ω )  →  ( suc  𝑥  +o  𝑦 )  ∈  ω ) | 
						
							| 84 |  | nnord | ⊢ ( ( suc  𝑥  +o  𝑦 )  ∈  ω  →  Ord  ( suc  𝑥  +o  𝑦 ) ) | 
						
							| 85 | 83 84 | syl | ⊢ ( ( 𝑥  ∈  ω  ∧  𝑦  ∈  ω )  →  Ord  ( suc  𝑥  +o  𝑦 ) ) | 
						
							| 86 |  | ordsucsssuc | ⊢ ( ( Ord  suc  𝑥  ∧  Ord  ( suc  𝑥  +o  𝑦 ) )  →  ( suc  𝑥  ⊆  ( suc  𝑥  +o  𝑦 )  ↔  suc  suc  𝑥  ⊆  suc  ( suc  𝑥  +o  𝑦 ) ) ) | 
						
							| 87 | 81 85 86 | syl2anc | ⊢ ( ( 𝑥  ∈  ω  ∧  𝑦  ∈  ω )  →  ( suc  𝑥  ⊆  ( suc  𝑥  +o  𝑦 )  ↔  suc  suc  𝑥  ⊆  suc  ( suc  𝑥  +o  𝑦 ) ) ) | 
						
							| 88 | 78 87 | mpbid | ⊢ ( ( 𝑥  ∈  ω  ∧  𝑦  ∈  ω )  →  suc  suc  𝑥  ⊆  suc  ( suc  𝑥  +o  𝑦 ) ) | 
						
							| 89 |  | nnasuc | ⊢ ( ( suc  𝑥  ∈  ω  ∧  𝑦  ∈  ω )  →  ( suc  𝑥  +o  suc  𝑦 )  =  suc  ( suc  𝑥  +o  𝑦 ) ) | 
						
							| 90 | 76 89 | sylan | ⊢ ( ( 𝑥  ∈  ω  ∧  𝑦  ∈  ω )  →  ( suc  𝑥  +o  suc  𝑦 )  =  suc  ( suc  𝑥  +o  𝑦 ) ) | 
						
							| 91 | 88 90 | sseqtrrd | ⊢ ( ( 𝑥  ∈  ω  ∧  𝑦  ∈  ω )  →  suc  suc  𝑥  ⊆  ( suc  𝑥  +o  suc  𝑦 ) ) | 
						
							| 92 |  | peano2 | ⊢ ( suc  𝑥  ∈  ω  →  suc  suc  𝑥  ∈  ω ) | 
						
							| 93 | 79 92 | syl | ⊢ ( ( 𝑥  ∈  ω  ∧  𝑦  ∈  ω )  →  suc  suc  𝑥  ∈  ω ) | 
						
							| 94 |  | nnord | ⊢ ( suc  suc  𝑥  ∈  ω  →  Ord  suc  suc  𝑥 ) | 
						
							| 95 | 93 94 | syl | ⊢ ( ( 𝑥  ∈  ω  ∧  𝑦  ∈  ω )  →  Ord  suc  suc  𝑥 ) | 
						
							| 96 |  | peano2 | ⊢ ( 𝑦  ∈  ω  →  suc  𝑦  ∈  ω ) | 
						
							| 97 |  | nnacl | ⊢ ( ( suc  𝑥  ∈  ω  ∧  suc  𝑦  ∈  ω )  →  ( suc  𝑥  +o  suc  𝑦 )  ∈  ω ) | 
						
							| 98 | 76 96 97 | syl2an | ⊢ ( ( 𝑥  ∈  ω  ∧  𝑦  ∈  ω )  →  ( suc  𝑥  +o  suc  𝑦 )  ∈  ω ) | 
						
							| 99 |  | nnord | ⊢ ( ( suc  𝑥  +o  suc  𝑦 )  ∈  ω  →  Ord  ( suc  𝑥  +o  suc  𝑦 ) ) | 
						
							| 100 | 98 99 | syl | ⊢ ( ( 𝑥  ∈  ω  ∧  𝑦  ∈  ω )  →  Ord  ( suc  𝑥  +o  suc  𝑦 ) ) | 
						
							| 101 |  | ordtri1 | ⊢ ( ( Ord  suc  suc  𝑥  ∧  Ord  ( suc  𝑥  +o  suc  𝑦 ) )  →  ( suc  suc  𝑥  ⊆  ( suc  𝑥  +o  suc  𝑦 )  ↔  ¬  ( suc  𝑥  +o  suc  𝑦 )  ∈  suc  suc  𝑥 ) ) | 
						
							| 102 | 95 100 101 | syl2anc | ⊢ ( ( 𝑥  ∈  ω  ∧  𝑦  ∈  ω )  →  ( suc  suc  𝑥  ⊆  ( suc  𝑥  +o  suc  𝑦 )  ↔  ¬  ( suc  𝑥  +o  suc  𝑦 )  ∈  suc  suc  𝑥 ) ) | 
						
							| 103 | 91 102 | mpbid | ⊢ ( ( 𝑥  ∈  ω  ∧  𝑦  ∈  ω )  →  ¬  ( suc  𝑥  +o  suc  𝑦 )  ∈  suc  suc  𝑥 ) | 
						
							| 104 |  | oveq12 | ⊢ ( ( 𝑛  =  suc  𝑥  ∧  𝑚  =  suc  𝑦 )  →  ( 𝑛  +o  𝑚 )  =  ( suc  𝑥  +o  suc  𝑦 ) ) | 
						
							| 105 |  | suceq | ⊢ ( 𝑛  =  suc  𝑥  →  suc  𝑛  =  suc  suc  𝑥 ) | 
						
							| 106 | 105 | adantr | ⊢ ( ( 𝑛  =  suc  𝑥  ∧  𝑚  =  suc  𝑦 )  →  suc  𝑛  =  suc  suc  𝑥 ) | 
						
							| 107 | 104 106 | eleq12d | ⊢ ( ( 𝑛  =  suc  𝑥  ∧  𝑚  =  suc  𝑦 )  →  ( ( 𝑛  +o  𝑚 )  ∈  suc  𝑛  ↔  ( suc  𝑥  +o  suc  𝑦 )  ∈  suc  suc  𝑥 ) ) | 
						
							| 108 | 107 | notbid | ⊢ ( ( 𝑛  =  suc  𝑥  ∧  𝑚  =  suc  𝑦 )  →  ( ¬  ( 𝑛  +o  𝑚 )  ∈  suc  𝑛  ↔  ¬  ( suc  𝑥  +o  suc  𝑦 )  ∈  suc  suc  𝑥 ) ) | 
						
							| 109 | 103 108 | syl5ibrcom | ⊢ ( ( 𝑥  ∈  ω  ∧  𝑦  ∈  ω )  →  ( ( 𝑛  =  suc  𝑥  ∧  𝑚  =  suc  𝑦 )  →  ¬  ( 𝑛  +o  𝑚 )  ∈  suc  𝑛 ) ) | 
						
							| 110 | 109 | rexlimivv | ⊢ ( ∃ 𝑥  ∈  ω ∃ 𝑦  ∈  ω ( 𝑛  =  suc  𝑥  ∧  𝑚  =  suc  𝑦 )  →  ¬  ( 𝑛  +o  𝑚 )  ∈  suc  𝑛 ) | 
						
							| 111 | 75 110 | sylbi | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  →  ¬  ( 𝑛  +o  𝑚 )  ∈  suc  𝑛 ) | 
						
							| 112 | 111 | iffalsed | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  →  if ( ( 𝑛  +o  𝑚 )  ∈  suc  𝑛 ,  ( 𝑓 ‘ ( 𝑛  +o  𝑚 ) ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  ( 𝑛  +o  𝑚 ) ) ) )  =  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  ( 𝑛  +o  𝑚 ) ) ) ) | 
						
							| 113 | 3 | adantl | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  →  𝑚  ∈  ω ) | 
						
							| 114 | 38 | adantr | ⊢ ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  𝑞  ∈  ω )  →  𝑛  ∈  ω ) | 
						
							| 115 |  | simpr | ⊢ ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  𝑞  ∈  ω )  →  𝑞  ∈  ω ) | 
						
							| 116 | 113 | adantr | ⊢ ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  𝑞  ∈  ω )  →  𝑚  ∈  ω ) | 
						
							| 117 |  | nnacan | ⊢ ( ( 𝑛  ∈  ω  ∧  𝑞  ∈  ω  ∧  𝑚  ∈  ω )  →  ( ( 𝑛  +o  𝑞 )  =  ( 𝑛  +o  𝑚 )  ↔  𝑞  =  𝑚 ) ) | 
						
							| 118 | 114 115 116 117 | syl3anc | ⊢ ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  𝑞  ∈  ω )  →  ( ( 𝑛  +o  𝑞 )  =  ( 𝑛  +o  𝑚 )  ↔  𝑞  =  𝑚 ) ) | 
						
							| 119 | 113 118 | riota5 | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  →  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  ( 𝑛  +o  𝑚 ) )  =  𝑚 ) | 
						
							| 120 | 119 | fveq2d | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  →  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  ( 𝑛  +o  𝑚 ) ) )  =  ( 𝑔 ‘ 𝑚 ) ) | 
						
							| 121 | 58 112 120 | 3eqtrd | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  →  ( ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) ) ‘ ( 𝑛  +o  𝑚 ) )  =  ( 𝑔 ‘ 𝑚 ) ) | 
						
							| 122 |  | simpr2r | ⊢ ( ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) )  →  ( 𝑔 ‘ 𝑚 )  =  𝑦 ) | 
						
							| 123 | 121 122 | sylan9eq | ⊢ ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  →  ( ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) ) ‘ ( 𝑛  +o  𝑚 ) )  =  𝑦 ) | 
						
							| 124 |  | simprl3 | ⊢ ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  →  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) | 
						
							| 125 |  | fveq2 | ⊢ ( 𝑎  =  𝑐  →  ( 𝑓 ‘ 𝑎 )  =  ( 𝑓 ‘ 𝑐 ) ) | 
						
							| 126 |  | suceq | ⊢ ( 𝑎  =  𝑐  →  suc  𝑎  =  suc  𝑐 ) | 
						
							| 127 | 126 | fveq2d | ⊢ ( 𝑎  =  𝑐  →  ( 𝑓 ‘ suc  𝑎 )  =  ( 𝑓 ‘ suc  𝑐 ) ) | 
						
							| 128 | 125 127 | breq12d | ⊢ ( 𝑎  =  𝑐  →  ( ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 )  ↔  ( 𝑓 ‘ 𝑐 ) 𝑅 ( 𝑓 ‘ suc  𝑐 ) ) ) | 
						
							| 129 | 128 | rspcv | ⊢ ( 𝑐  ∈  𝑛  →  ( ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 )  →  ( 𝑓 ‘ 𝑐 ) 𝑅 ( 𝑓 ‘ suc  𝑐 ) ) ) | 
						
							| 130 | 124 129 | mpan9 | ⊢ ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  𝑛 )  →  ( 𝑓 ‘ 𝑐 ) 𝑅 ( 𝑓 ‘ suc  𝑐 ) ) | 
						
							| 131 |  | elelsuc | ⊢ ( 𝑐  ∈  𝑛  →  𝑐  ∈  suc  𝑛 ) | 
						
							| 132 | 131 | adantl | ⊢ ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  𝑛 )  →  𝑐  ∈  suc  𝑛 ) | 
						
							| 133 | 132 | iftrued | ⊢ ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  𝑛 )  →  if ( 𝑐  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑐 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) )  =  ( 𝑓 ‘ 𝑐 ) ) | 
						
							| 134 |  | ordsucelsuc | ⊢ ( Ord  𝑛  →  ( 𝑐  ∈  𝑛  ↔  suc  𝑐  ∈  suc  𝑛 ) ) | 
						
							| 135 | 39 134 | syl | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  →  ( 𝑐  ∈  𝑛  ↔  suc  𝑐  ∈  suc  𝑛 ) ) | 
						
							| 136 | 135 | adantr | ⊢ ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  →  ( 𝑐  ∈  𝑛  ↔  suc  𝑐  ∈  suc  𝑛 ) ) | 
						
							| 137 | 136 | biimpa | ⊢ ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  𝑛 )  →  suc  𝑐  ∈  suc  𝑛 ) | 
						
							| 138 | 137 | iftrued | ⊢ ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  𝑛 )  →  if ( suc  𝑐  ∈  suc  𝑛 ,  ( 𝑓 ‘ suc  𝑐 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑐 ) ) )  =  ( 𝑓 ‘ suc  𝑐 ) ) | 
						
							| 139 | 130 133 138 | 3brtr4d | ⊢ ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  𝑛 )  →  if ( 𝑐  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑐 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) ) 𝑅 if ( suc  𝑐  ∈  suc  𝑛 ,  ( 𝑓 ‘ suc  𝑐 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑐 ) ) ) ) | 
						
							| 140 | 139 | adantlr | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑐  ∈  𝑛 )  →  if ( 𝑐  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑐 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) ) 𝑅 if ( suc  𝑐  ∈  suc  𝑛 ,  ( 𝑓 ‘ suc  𝑐 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑐 ) ) ) ) | 
						
							| 141 | 39 | adantr | ⊢ ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  →  Ord  𝑛 ) | 
						
							| 142 | 5 | adantr | ⊢ ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  →  ( 𝑛  +o  𝑚 )  ∈  ω ) | 
						
							| 143 |  | elnn | ⊢ ( ( 𝑐  ∈  ( 𝑛  +o  𝑚 )  ∧  ( 𝑛  +o  𝑚 )  ∈  ω )  →  𝑐  ∈  ω ) | 
						
							| 144 | 143 | ancoms | ⊢ ( ( ( 𝑛  +o  𝑚 )  ∈  ω  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  →  𝑐  ∈  ω ) | 
						
							| 145 | 142 144 | sylan | ⊢ ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  →  𝑐  ∈  ω ) | 
						
							| 146 |  | nnord | ⊢ ( 𝑐  ∈  ω  →  Ord  𝑐 ) | 
						
							| 147 | 145 146 | syl | ⊢ ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  →  Ord  𝑐 ) | 
						
							| 148 |  | ordtri3or | ⊢ ( ( Ord  𝑛  ∧  Ord  𝑐 )  →  ( 𝑛  ∈  𝑐  ∨  𝑛  =  𝑐  ∨  𝑐  ∈  𝑛 ) ) | 
						
							| 149 | 141 147 148 | syl2an2r | ⊢ ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  →  ( 𝑛  ∈  𝑐  ∨  𝑛  =  𝑐  ∨  𝑐  ∈  𝑛 ) ) | 
						
							| 150 |  | 3orel3 | ⊢ ( ¬  𝑐  ∈  𝑛  →  ( ( 𝑛  ∈  𝑐  ∨  𝑛  =  𝑐  ∨  𝑐  ∈  𝑛 )  →  ( 𝑛  ∈  𝑐  ∨  𝑛  =  𝑐 ) ) ) | 
						
							| 151 | 149 150 | syl5com | ⊢ ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  →  ( ¬  𝑐  ∈  𝑛  →  ( 𝑛  ∈  𝑐  ∨  𝑛  =  𝑐 ) ) ) | 
						
							| 152 |  | fveq2 | ⊢ ( 𝑏  =  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 )  →  ( 𝑔 ‘ 𝑏 )  =  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) ) | 
						
							| 153 |  | suceq | ⊢ ( 𝑏  =  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 )  →  suc  𝑏  =  suc  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) | 
						
							| 154 | 153 | fveq2d | ⊢ ( 𝑏  =  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 )  →  ( 𝑔 ‘ suc  𝑏 )  =  ( 𝑔 ‘ suc  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) ) | 
						
							| 155 | 152 154 | breq12d | ⊢ ( 𝑏  =  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 )  →  ( ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 )  ↔  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) 𝑅 ( 𝑔 ‘ suc  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) ) ) | 
						
							| 156 |  | simprr3 | ⊢ ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  →  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) | 
						
							| 157 | 156 | adantr | ⊢ ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  →  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) | 
						
							| 158 | 157 | adantr | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  →  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) | 
						
							| 159 |  | ordelss | ⊢ ( ( Ord  𝑐  ∧  𝑛  ∈  𝑐 )  →  𝑛  ⊆  𝑐 ) | 
						
							| 160 | 147 159 | sylan | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  →  𝑛  ⊆  𝑐 ) | 
						
							| 161 | 38 | adantr | ⊢ ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  →  𝑛  ∈  ω ) | 
						
							| 162 | 161 | adantr | ⊢ ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  →  𝑛  ∈  ω ) | 
						
							| 163 | 145 | adantr | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  →  𝑐  ∈  ω ) | 
						
							| 164 |  | nnawordex | ⊢ ( ( 𝑛  ∈  ω  ∧  𝑐  ∈  ω )  →  ( 𝑛  ⊆  𝑐  ↔  ∃ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) | 
						
							| 165 | 162 163 164 | syl2an2r | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  →  ( 𝑛  ⊆  𝑐  ↔  ∃ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) | 
						
							| 166 | 160 165 | mpbid | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  →  ∃ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) | 
						
							| 167 |  | oveq2 | ⊢ ( 𝑞  =  𝑝  →  ( 𝑛  +o  𝑞 )  =  ( 𝑛  +o  𝑝 ) ) | 
						
							| 168 | 167 | eqeq1d | ⊢ ( 𝑞  =  𝑝  →  ( ( 𝑛  +o  𝑞 )  =  𝑐  ↔  ( 𝑛  +o  𝑝 )  =  𝑐 ) ) | 
						
							| 169 | 168 | cbvrexvw | ⊢ ( ∃ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐  ↔  ∃ 𝑝  ∈  ω ( 𝑛  +o  𝑝 )  =  𝑐 ) | 
						
							| 170 | 166 169 | sylib | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  →  ∃ 𝑝  ∈  ω ( 𝑛  +o  𝑝 )  =  𝑐 ) | 
						
							| 171 |  | simprr | ⊢ ( ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  ∧  ( 𝑝  ∈  ω  ∧  ( 𝑛  +o  𝑝 )  =  𝑐 ) )  →  ( 𝑛  +o  𝑝 )  =  𝑐 ) | 
						
							| 172 |  | simpllr | ⊢ ( ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  ∧  ( 𝑝  ∈  ω  ∧  ( 𝑛  +o  𝑝 )  =  𝑐 ) )  →  𝑐  ∈  ( 𝑛  +o  𝑚 ) ) | 
						
							| 173 | 171 172 | eqeltrd | ⊢ ( ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  ∧  ( 𝑝  ∈  ω  ∧  ( 𝑛  +o  𝑝 )  =  𝑐 ) )  →  ( 𝑛  +o  𝑝 )  ∈  ( 𝑛  +o  𝑚 ) ) | 
						
							| 174 |  | simprl | ⊢ ( ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  ∧  ( 𝑝  ∈  ω  ∧  ( 𝑛  +o  𝑝 )  =  𝑐 ) )  →  𝑝  ∈  ω ) | 
						
							| 175 | 3 | ad4antlr | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  →  𝑚  ∈  ω ) | 
						
							| 176 | 175 | adantr | ⊢ ( ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  ∧  ( 𝑝  ∈  ω  ∧  ( 𝑛  +o  𝑝 )  =  𝑐 ) )  →  𝑚  ∈  ω ) | 
						
							| 177 | 162 | adantr | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  →  𝑛  ∈  ω ) | 
						
							| 178 | 177 | adantr | ⊢ ( ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  ∧  ( 𝑝  ∈  ω  ∧  ( 𝑛  +o  𝑝 )  =  𝑐 ) )  →  𝑛  ∈  ω ) | 
						
							| 179 |  | nnaord | ⊢ ( ( 𝑝  ∈  ω  ∧  𝑚  ∈  ω  ∧  𝑛  ∈  ω )  →  ( 𝑝  ∈  𝑚  ↔  ( 𝑛  +o  𝑝 )  ∈  ( 𝑛  +o  𝑚 ) ) ) | 
						
							| 180 | 174 176 178 179 | syl3anc | ⊢ ( ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  ∧  ( 𝑝  ∈  ω  ∧  ( 𝑛  +o  𝑝 )  =  𝑐 ) )  →  ( 𝑝  ∈  𝑚  ↔  ( 𝑛  +o  𝑝 )  ∈  ( 𝑛  +o  𝑚 ) ) ) | 
						
							| 181 | 173 180 | mpbird | ⊢ ( ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  ∧  ( 𝑝  ∈  ω  ∧  ( 𝑛  +o  𝑝 )  =  𝑐 ) )  →  𝑝  ∈  𝑚 ) | 
						
							| 182 | 170 181 171 | reximssdv | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  →  ∃ 𝑝  ∈  𝑚 ( 𝑛  +o  𝑝 )  =  𝑐 ) | 
						
							| 183 |  | elnn | ⊢ ( ( 𝑝  ∈  𝑚  ∧  𝑚  ∈  ω )  →  𝑝  ∈  ω ) | 
						
							| 184 | 183 | ancoms | ⊢ ( ( 𝑚  ∈  ω  ∧  𝑝  ∈  𝑚 )  →  𝑝  ∈  ω ) | 
						
							| 185 | 175 184 | sylan | ⊢ ( ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  ∧  𝑝  ∈  𝑚 )  →  𝑝  ∈  ω ) | 
						
							| 186 |  | nnasmo | ⊢ ( 𝑛  ∈  ω  →  ∃* 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) | 
						
							| 187 | 177 186 | syl | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  →  ∃* 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) | 
						
							| 188 |  | reu5 | ⊢ ( ∃! 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐  ↔  ( ∃ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐  ∧  ∃* 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) | 
						
							| 189 | 166 187 188 | sylanbrc | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  →  ∃! 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) | 
						
							| 190 | 189 | adantr | ⊢ ( ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  ∧  𝑝  ∈  𝑚 )  →  ∃! 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) | 
						
							| 191 | 168 | riota2 | ⊢ ( ( 𝑝  ∈  ω  ∧  ∃! 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 )  →  ( ( 𝑛  +o  𝑝 )  =  𝑐  ↔  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 )  =  𝑝 ) ) | 
						
							| 192 | 185 190 191 | syl2anc | ⊢ ( ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  ∧  𝑝  ∈  𝑚 )  →  ( ( 𝑛  +o  𝑝 )  =  𝑐  ↔  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 )  =  𝑝 ) ) | 
						
							| 193 |  | eqcom | ⊢ ( ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 )  =  𝑝  ↔  𝑝  =  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) | 
						
							| 194 | 192 193 | bitrdi | ⊢ ( ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  ∧  𝑝  ∈  𝑚 )  →  ( ( 𝑛  +o  𝑝 )  =  𝑐  ↔  𝑝  =  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) ) | 
						
							| 195 | 194 | rexbidva | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  →  ( ∃ 𝑝  ∈  𝑚 ( 𝑛  +o  𝑝 )  =  𝑐  ↔  ∃ 𝑝  ∈  𝑚 𝑝  =  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) ) | 
						
							| 196 | 182 195 | mpbid | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  →  ∃ 𝑝  ∈  𝑚 𝑝  =  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) | 
						
							| 197 |  | risset | ⊢ ( ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 )  ∈  𝑚  ↔  ∃ 𝑝  ∈  𝑚 𝑝  =  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) | 
						
							| 198 | 196 197 | sylibr | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  →  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 )  ∈  𝑚 ) | 
						
							| 199 | 155 158 198 | rspcdva | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  →  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) 𝑅 ( 𝑔 ‘ suc  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) ) | 
						
							| 200 |  | simpr | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  →  𝑛  ∈  𝑐 ) | 
						
							| 201 |  | vex | ⊢ 𝑛  ∈  V | 
						
							| 202 | 147 | adantr | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  →  Ord  𝑐 ) | 
						
							| 203 |  | ordelsuc | ⊢ ( ( 𝑛  ∈  V  ∧  Ord  𝑐 )  →  ( 𝑛  ∈  𝑐  ↔  suc  𝑛  ⊆  𝑐 ) ) | 
						
							| 204 | 201 202 203 | sylancr | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  →  ( 𝑛  ∈  𝑐  ↔  suc  𝑛  ⊆  𝑐 ) ) | 
						
							| 205 |  | peano2 | ⊢ ( 𝑛  ∈  ω  →  suc  𝑛  ∈  ω ) | 
						
							| 206 | 38 205 | syl | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  →  suc  𝑛  ∈  ω ) | 
						
							| 207 |  | nnord | ⊢ ( suc  𝑛  ∈  ω  →  Ord  suc  𝑛 ) | 
						
							| 208 | 206 207 | syl | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  →  Ord  suc  𝑛 ) | 
						
							| 209 | 208 | adantr | ⊢ ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  →  Ord  suc  𝑛 ) | 
						
							| 210 | 209 | adantr | ⊢ ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  →  Ord  suc  𝑛 ) | 
						
							| 211 |  | ordtri1 | ⊢ ( ( Ord  suc  𝑛  ∧  Ord  𝑐 )  →  ( suc  𝑛  ⊆  𝑐  ↔  ¬  𝑐  ∈  suc  𝑛 ) ) | 
						
							| 212 | 210 202 211 | syl2an2r | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  →  ( suc  𝑛  ⊆  𝑐  ↔  ¬  𝑐  ∈  suc  𝑛 ) ) | 
						
							| 213 | 204 212 | bitrd | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  →  ( 𝑛  ∈  𝑐  ↔  ¬  𝑐  ∈  suc  𝑛 ) ) | 
						
							| 214 | 200 213 | mpbid | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  →  ¬  𝑐  ∈  suc  𝑛 ) | 
						
							| 215 | 214 | iffalsed | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  →  if ( 𝑐  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑐 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) )  =  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) ) | 
						
							| 216 |  | riotacl | ⊢ ( ∃! 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐  →  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 )  ∈  ω ) | 
						
							| 217 | 189 216 | syl | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  →  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 )  ∈  ω ) | 
						
							| 218 |  | nnasuc | ⊢ ( ( 𝑛  ∈  ω  ∧  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 )  ∈  ω )  →  ( 𝑛  +o  suc  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) )  =  suc  ( 𝑛  +o  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) ) | 
						
							| 219 | 162 217 218 | syl2an2r | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  →  ( 𝑛  +o  suc  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) )  =  suc  ( 𝑛  +o  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) ) | 
						
							| 220 |  | eqidd | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  →  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 )  =  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) | 
						
							| 221 |  | nfriota1 | ⊢ Ⅎ 𝑞 ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) | 
						
							| 222 |  | nfcv | ⊢ Ⅎ 𝑞 𝑛 | 
						
							| 223 |  | nfcv | ⊢ Ⅎ 𝑞  +o | 
						
							| 224 | 222 223 221 | nfov | ⊢ Ⅎ 𝑞 ( 𝑛  +o  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) | 
						
							| 225 | 224 | nfeq1 | ⊢ Ⅎ 𝑞 ( 𝑛  +o  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) )  =  𝑐 | 
						
							| 226 |  | oveq2 | ⊢ ( 𝑞  =  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 )  →  ( 𝑛  +o  𝑞 )  =  ( 𝑛  +o  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) ) | 
						
							| 227 | 226 | eqeq1d | ⊢ ( 𝑞  =  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 )  →  ( ( 𝑛  +o  𝑞 )  =  𝑐  ↔  ( 𝑛  +o  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) )  =  𝑐 ) ) | 
						
							| 228 | 221 225 227 | riota2f | ⊢ ( ( ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 )  ∈  ω  ∧  ∃! 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 )  →  ( ( 𝑛  +o  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) )  =  𝑐  ↔  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 )  =  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) ) | 
						
							| 229 | 217 189 228 | syl2anc | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  →  ( ( 𝑛  +o  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) )  =  𝑐  ↔  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 )  =  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) ) | 
						
							| 230 | 220 229 | mpbird | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  →  ( 𝑛  +o  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) )  =  𝑐 ) | 
						
							| 231 |  | suceq | ⊢ ( ( 𝑛  +o  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) )  =  𝑐  →  suc  ( 𝑛  +o  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) )  =  suc  𝑐 ) | 
						
							| 232 | 230 231 | syl | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  →  suc  ( 𝑛  +o  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) )  =  suc  𝑐 ) | 
						
							| 233 | 219 232 | eqtrd | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  →  ( 𝑛  +o  suc  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) )  =  suc  𝑐 ) | 
						
							| 234 |  | peano2 | ⊢ ( ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 )  ∈  ω  →  suc  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 )  ∈  ω ) | 
						
							| 235 | 217 234 | syl | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  →  suc  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 )  ∈  ω ) | 
						
							| 236 |  | peano2 | ⊢ ( 𝑝  ∈  ω  →  suc  𝑝  ∈  ω ) | 
						
							| 237 |  | nnasuc | ⊢ ( ( 𝑛  ∈  ω  ∧  𝑝  ∈  ω )  →  ( 𝑛  +o  suc  𝑝 )  =  suc  ( 𝑛  +o  𝑝 ) ) | 
						
							| 238 | 177 237 | sylan | ⊢ ( ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  ∧  𝑝  ∈  ω )  →  ( 𝑛  +o  suc  𝑝 )  =  suc  ( 𝑛  +o  𝑝 ) ) | 
						
							| 239 |  | oveq2 | ⊢ ( 𝑞  =  suc  𝑝  →  ( 𝑛  +o  𝑞 )  =  ( 𝑛  +o  suc  𝑝 ) ) | 
						
							| 240 | 239 | eqeq1d | ⊢ ( 𝑞  =  suc  𝑝  →  ( ( 𝑛  +o  𝑞 )  =  suc  ( 𝑛  +o  𝑝 )  ↔  ( 𝑛  +o  suc  𝑝 )  =  suc  ( 𝑛  +o  𝑝 ) ) ) | 
						
							| 241 | 240 | rspcev | ⊢ ( ( suc  𝑝  ∈  ω  ∧  ( 𝑛  +o  suc  𝑝 )  =  suc  ( 𝑛  +o  𝑝 ) )  →  ∃ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  ( 𝑛  +o  𝑝 ) ) | 
						
							| 242 | 236 238 241 | syl2an2 | ⊢ ( ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  ∧  𝑝  ∈  ω )  →  ∃ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  ( 𝑛  +o  𝑝 ) ) | 
						
							| 243 |  | suceq | ⊢ ( ( 𝑛  +o  𝑝 )  =  𝑐  →  suc  ( 𝑛  +o  𝑝 )  =  suc  𝑐 ) | 
						
							| 244 | 243 | eqeq2d | ⊢ ( ( 𝑛  +o  𝑝 )  =  𝑐  →  ( ( 𝑛  +o  𝑞 )  =  suc  ( 𝑛  +o  𝑝 )  ↔  ( 𝑛  +o  𝑞 )  =  suc  𝑐 ) ) | 
						
							| 245 | 244 | rexbidv | ⊢ ( ( 𝑛  +o  𝑝 )  =  𝑐  →  ( ∃ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  ( 𝑛  +o  𝑝 )  ↔  ∃ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑐 ) ) | 
						
							| 246 | 242 245 | syl5ibcom | ⊢ ( ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  ∧  𝑝  ∈  ω )  →  ( ( 𝑛  +o  𝑝 )  =  𝑐  →  ∃ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑐 ) ) | 
						
							| 247 | 246 | rexlimdva | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  →  ( ∃ 𝑝  ∈  ω ( 𝑛  +o  𝑝 )  =  𝑐  →  ∃ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑐 ) ) | 
						
							| 248 | 170 247 | mpd | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  →  ∃ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑐 ) | 
						
							| 249 |  | nnasmo | ⊢ ( 𝑛  ∈  ω  →  ∃* 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑐 ) | 
						
							| 250 | 177 249 | syl | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  →  ∃* 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑐 ) | 
						
							| 251 |  | reu5 | ⊢ ( ∃! 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑐  ↔  ( ∃ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑐  ∧  ∃* 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑐 ) ) | 
						
							| 252 | 248 250 251 | sylanbrc | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  →  ∃! 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑐 ) | 
						
							| 253 | 221 | nfsuc | ⊢ Ⅎ 𝑞 suc  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) | 
						
							| 254 | 222 223 253 | nfov | ⊢ Ⅎ 𝑞 ( 𝑛  +o  suc  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) | 
						
							| 255 | 254 | nfeq1 | ⊢ Ⅎ 𝑞 ( 𝑛  +o  suc  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) )  =  suc  𝑐 | 
						
							| 256 |  | oveq2 | ⊢ ( 𝑞  =  suc  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 )  →  ( 𝑛  +o  𝑞 )  =  ( 𝑛  +o  suc  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) ) | 
						
							| 257 | 256 | eqeq1d | ⊢ ( 𝑞  =  suc  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 )  →  ( ( 𝑛  +o  𝑞 )  =  suc  𝑐  ↔  ( 𝑛  +o  suc  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) )  =  suc  𝑐 ) ) | 
						
							| 258 | 253 255 257 | riota2f | ⊢ ( ( suc  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 )  ∈  ω  ∧  ∃! 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑐 )  →  ( ( 𝑛  +o  suc  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) )  =  suc  𝑐  ↔  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑐 )  =  suc  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) ) | 
						
							| 259 | 235 252 258 | syl2anc | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  →  ( ( 𝑛  +o  suc  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) )  =  suc  𝑐  ↔  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑐 )  =  suc  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) ) | 
						
							| 260 | 233 259 | mpbid | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  →  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑐 )  =  suc  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) | 
						
							| 261 | 260 | fveq2d | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  →  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑐 ) )  =  ( 𝑔 ‘ suc  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) ) | 
						
							| 262 | 199 215 261 | 3brtr4d | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  𝑛  ∈  𝑐 )  →  if ( 𝑐  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑐 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) ) 𝑅 ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑐 ) ) ) | 
						
							| 263 | 262 | ex | ⊢ ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  →  ( 𝑛  ∈  𝑐  →  if ( 𝑐  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑐 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) ) 𝑅 ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑐 ) ) ) ) | 
						
							| 264 |  | fveq2 | ⊢ ( 𝑏  =  ∅  →  ( 𝑔 ‘ 𝑏 )  =  ( 𝑔 ‘ ∅ ) ) | 
						
							| 265 |  | suceq | ⊢ ( 𝑏  =  ∅  →  suc  𝑏  =  suc  ∅ ) | 
						
							| 266 | 265 59 | eqtr4di | ⊢ ( 𝑏  =  ∅  →  suc  𝑏  =  1o ) | 
						
							| 267 | 266 | fveq2d | ⊢ ( 𝑏  =  ∅  →  ( 𝑔 ‘ suc  𝑏 )  =  ( 𝑔 ‘ 1o ) ) | 
						
							| 268 | 264 267 | breq12d | ⊢ ( 𝑏  =  ∅  →  ( ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 )  ↔  ( 𝑔 ‘ ∅ ) 𝑅 ( 𝑔 ‘ 1o ) ) ) | 
						
							| 269 |  | eldif | ⊢ ( 𝑚  ∈  ( ω  ∖  1o )  ↔  ( 𝑚  ∈  ω  ∧  ¬  𝑚  ∈  1o ) ) | 
						
							| 270 |  | nnord | ⊢ ( 𝑚  ∈  ω  →  Ord  𝑚 ) | 
						
							| 271 |  | ordtri1 | ⊢ ( ( Ord  1o  ∧  Ord  𝑚 )  →  ( 1o  ⊆  𝑚  ↔  ¬  𝑚  ∈  1o ) ) | 
						
							| 272 | 8 270 271 | sylancr | ⊢ ( 𝑚  ∈  ω  →  ( 1o  ⊆  𝑚  ↔  ¬  𝑚  ∈  1o ) ) | 
						
							| 273 | 272 | biimpar | ⊢ ( ( 𝑚  ∈  ω  ∧  ¬  𝑚  ∈  1o )  →  1o  ⊆  𝑚 ) | 
						
							| 274 | 269 273 | sylbi | ⊢ ( 𝑚  ∈  ( ω  ∖  1o )  →  1o  ⊆  𝑚 ) | 
						
							| 275 | 274 | adantl | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  →  1o  ⊆  𝑚 ) | 
						
							| 276 | 59 275 | eqsstrrid | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  →  suc  ∅  ⊆  𝑚 ) | 
						
							| 277 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 278 | 113 270 | syl | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  →  Ord  𝑚 ) | 
						
							| 279 |  | ordelsuc | ⊢ ( ( ∅  ∈  V  ∧  Ord  𝑚 )  →  ( ∅  ∈  𝑚  ↔  suc  ∅  ⊆  𝑚 ) ) | 
						
							| 280 | 277 278 279 | sylancr | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  →  ( ∅  ∈  𝑚  ↔  suc  ∅  ⊆  𝑚 ) ) | 
						
							| 281 | 276 280 | mpbird | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  →  ∅  ∈  𝑚 ) | 
						
							| 282 | 281 | adantr | ⊢ ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  →  ∅  ∈  𝑚 ) | 
						
							| 283 | 268 156 282 | rspcdva | ⊢ ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  →  ( 𝑔 ‘ ∅ ) 𝑅 ( 𝑔 ‘ 1o ) ) | 
						
							| 284 |  | simpl2r | ⊢ ( ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) )  →  ( 𝑓 ‘ 𝑛 )  =  𝑧 ) | 
						
							| 285 |  | simpr2l | ⊢ ( ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) )  →  ( 𝑔 ‘ ∅ )  =  𝑧 ) | 
						
							| 286 | 284 285 | eqtr4d | ⊢ ( ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) )  →  ( 𝑓 ‘ 𝑛 )  =  ( 𝑔 ‘ ∅ ) ) | 
						
							| 287 | 286 | adantl | ⊢ ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  →  ( 𝑓 ‘ 𝑛 )  =  ( 𝑔 ‘ ∅ ) ) | 
						
							| 288 |  | nnon | ⊢ ( 𝑛  ∈  ω  →  𝑛  ∈  On ) | 
						
							| 289 | 38 288 | syl | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  →  𝑛  ∈  On ) | 
						
							| 290 |  | oa1suc | ⊢ ( 𝑛  ∈  On  →  ( 𝑛  +o  1o )  =  suc  𝑛 ) | 
						
							| 291 | 289 290 | syl | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  →  ( 𝑛  +o  1o )  =  suc  𝑛 ) | 
						
							| 292 |  | 1onn | ⊢ 1o  ∈  ω | 
						
							| 293 |  | oveq2 | ⊢ ( 𝑞  =  1o  →  ( 𝑛  +o  𝑞 )  =  ( 𝑛  +o  1o ) ) | 
						
							| 294 | 293 | eqeq1d | ⊢ ( 𝑞  =  1o  →  ( ( 𝑛  +o  𝑞 )  =  suc  𝑛  ↔  ( 𝑛  +o  1o )  =  suc  𝑛 ) ) | 
						
							| 295 | 294 | rspcev | ⊢ ( ( 1o  ∈  ω  ∧  ( 𝑛  +o  1o )  =  suc  𝑛 )  →  ∃ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑛 ) | 
						
							| 296 | 292 291 295 | sylancr | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  →  ∃ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑛 ) | 
						
							| 297 |  | nnasmo | ⊢ ( 𝑛  ∈  ω  →  ∃* 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑛 ) | 
						
							| 298 | 38 297 | syl | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  →  ∃* 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑛 ) | 
						
							| 299 |  | reu5 | ⊢ ( ∃! 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑛  ↔  ( ∃ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑛  ∧  ∃* 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑛 ) ) | 
						
							| 300 | 296 298 299 | sylanbrc | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  →  ∃! 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑛 ) | 
						
							| 301 | 294 | riota2 | ⊢ ( ( 1o  ∈  ω  ∧  ∃! 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑛 )  →  ( ( 𝑛  +o  1o )  =  suc  𝑛  ↔  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑛 )  =  1o ) ) | 
						
							| 302 | 292 300 301 | sylancr | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  →  ( ( 𝑛  +o  1o )  =  suc  𝑛  ↔  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑛 )  =  1o ) ) | 
						
							| 303 | 291 302 | mpbid | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  →  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑛 )  =  1o ) | 
						
							| 304 | 303 | adantr | ⊢ ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  →  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑛 )  =  1o ) | 
						
							| 305 | 304 | fveq2d | ⊢ ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  →  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑛 ) )  =  ( 𝑔 ‘ 1o ) ) | 
						
							| 306 | 283 287 305 | 3brtr4d | ⊢ ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  →  ( 𝑓 ‘ 𝑛 ) 𝑅 ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑛 ) ) ) | 
						
							| 307 | 201 | sucid | ⊢ 𝑛  ∈  suc  𝑛 | 
						
							| 308 | 307 | iftruei | ⊢ if ( 𝑛  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑛 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) )  =  ( 𝑓 ‘ 𝑛 ) | 
						
							| 309 |  | eleq1 | ⊢ ( 𝑛  =  𝑐  →  ( 𝑛  ∈  suc  𝑛  ↔  𝑐  ∈  suc  𝑛 ) ) | 
						
							| 310 |  | fveq2 | ⊢ ( 𝑛  =  𝑐  →  ( 𝑓 ‘ 𝑛 )  =  ( 𝑓 ‘ 𝑐 ) ) | 
						
							| 311 | 309 310 | ifbieq1d | ⊢ ( 𝑛  =  𝑐  →  if ( 𝑛  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑛 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) )  =  if ( 𝑐  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑐 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) ) ) | 
						
							| 312 | 308 311 | eqtr3id | ⊢ ( 𝑛  =  𝑐  →  ( 𝑓 ‘ 𝑛 )  =  if ( 𝑐  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑐 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) ) ) | 
						
							| 313 |  | suceq | ⊢ ( 𝑛  =  𝑐  →  suc  𝑛  =  suc  𝑐 ) | 
						
							| 314 | 313 | eqeq2d | ⊢ ( 𝑛  =  𝑐  →  ( ( 𝑛  +o  𝑞 )  =  suc  𝑛  ↔  ( 𝑛  +o  𝑞 )  =  suc  𝑐 ) ) | 
						
							| 315 | 314 | riotabidv | ⊢ ( 𝑛  =  𝑐  →  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑛 )  =  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑐 ) ) | 
						
							| 316 | 315 | fveq2d | ⊢ ( 𝑛  =  𝑐  →  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑛 ) )  =  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑐 ) ) ) | 
						
							| 317 | 312 316 | breq12d | ⊢ ( 𝑛  =  𝑐  →  ( ( 𝑓 ‘ 𝑛 ) 𝑅 ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑛 ) )  ↔  if ( 𝑐  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑐 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) ) 𝑅 ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑐 ) ) ) ) | 
						
							| 318 | 306 317 | syl5ibcom | ⊢ ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  →  ( 𝑛  =  𝑐  →  if ( 𝑐  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑐 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) ) 𝑅 ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑐 ) ) ) ) | 
						
							| 319 | 318 | adantr | ⊢ ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  →  ( 𝑛  =  𝑐  →  if ( 𝑐  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑐 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) ) 𝑅 ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑐 ) ) ) ) | 
						
							| 320 | 263 319 | jaod | ⊢ ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  →  ( ( 𝑛  ∈  𝑐  ∨  𝑛  =  𝑐 )  →  if ( 𝑐  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑐 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) ) 𝑅 ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑐 ) ) ) ) | 
						
							| 321 | 151 320 | syld | ⊢ ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  →  ( ¬  𝑐  ∈  𝑛  →  if ( 𝑐  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑐 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) ) 𝑅 ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑐 ) ) ) ) | 
						
							| 322 | 321 | imp | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  ¬  𝑐  ∈  𝑛 )  →  if ( 𝑐  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑐 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) ) 𝑅 ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑐 ) ) ) | 
						
							| 323 | 135 | notbid | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  →  ( ¬  𝑐  ∈  𝑛  ↔  ¬  suc  𝑐  ∈  suc  𝑛 ) ) | 
						
							| 324 | 323 | adantr | ⊢ ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  →  ( ¬  𝑐  ∈  𝑛  ↔  ¬  suc  𝑐  ∈  suc  𝑛 ) ) | 
						
							| 325 | 324 | adantr | ⊢ ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  →  ( ¬  𝑐  ∈  𝑛  ↔  ¬  suc  𝑐  ∈  suc  𝑛 ) ) | 
						
							| 326 | 325 | biimpa | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  ¬  𝑐  ∈  𝑛 )  →  ¬  suc  𝑐  ∈  suc  𝑛 ) | 
						
							| 327 | 326 | iffalsed | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  ¬  𝑐  ∈  𝑛 )  →  if ( suc  𝑐  ∈  suc  𝑛 ,  ( 𝑓 ‘ suc  𝑐 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑐 ) ) )  =  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑐 ) ) ) | 
						
							| 328 | 322 327 | breqtrrd | ⊢ ( ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  ∧  ¬  𝑐  ∈  𝑛 )  →  if ( 𝑐  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑐 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) ) 𝑅 if ( suc  𝑐  ∈  suc  𝑛 ,  ( 𝑓 ‘ suc  𝑐 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑐 ) ) ) ) | 
						
							| 329 | 140 328 | pm2.61dan | ⊢ ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  →  if ( 𝑐  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑐 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) ) 𝑅 if ( suc  𝑐  ∈  suc  𝑛 ,  ( 𝑓 ‘ suc  𝑐 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑐 ) ) ) ) | 
						
							| 330 |  | elelsuc | ⊢ ( 𝑐  ∈  ( 𝑛  +o  𝑚 )  →  𝑐  ∈  suc  ( 𝑛  +o  𝑚 ) ) | 
						
							| 331 | 330 | adantl | ⊢ ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  →  𝑐  ∈  suc  ( 𝑛  +o  𝑚 ) ) | 
						
							| 332 |  | eleq1 | ⊢ ( 𝑝  =  𝑐  →  ( 𝑝  ∈  suc  𝑛  ↔  𝑐  ∈  suc  𝑛 ) ) | 
						
							| 333 |  | fveq2 | ⊢ ( 𝑝  =  𝑐  →  ( 𝑓 ‘ 𝑝 )  =  ( 𝑓 ‘ 𝑐 ) ) | 
						
							| 334 |  | eqeq2 | ⊢ ( 𝑝  =  𝑐  →  ( ( 𝑛  +o  𝑞 )  =  𝑝  ↔  ( 𝑛  +o  𝑞 )  =  𝑐 ) ) | 
						
							| 335 | 334 | riotabidv | ⊢ ( 𝑝  =  𝑐  →  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 )  =  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) | 
						
							| 336 | 335 | fveq2d | ⊢ ( 𝑝  =  𝑐  →  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) )  =  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) ) | 
						
							| 337 | 332 333 336 | ifbieq12d | ⊢ ( 𝑝  =  𝑐  →  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) )  =  if ( 𝑐  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑐 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) ) ) | 
						
							| 338 |  | fvex | ⊢ ( 𝑓 ‘ 𝑐 )  ∈  V | 
						
							| 339 |  | fvex | ⊢ ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) )  ∈  V | 
						
							| 340 | 338 339 | ifex | ⊢ if ( 𝑐  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑐 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) )  ∈  V | 
						
							| 341 | 337 32 340 | fvmpt | ⊢ ( 𝑐  ∈  suc  ( 𝑛  +o  𝑚 )  →  ( ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) ) ‘ 𝑐 )  =  if ( 𝑐  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑐 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) ) ) | 
						
							| 342 | 331 341 | syl | ⊢ ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  →  ( ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) ) ‘ 𝑐 )  =  if ( 𝑐  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑐 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑐 ) ) ) ) | 
						
							| 343 |  | ordsucelsuc | ⊢ ( Ord  ( 𝑛  +o  𝑚 )  →  ( 𝑐  ∈  ( 𝑛  +o  𝑚 )  ↔  suc  𝑐  ∈  suc  ( 𝑛  +o  𝑚 ) ) ) | 
						
							| 344 | 19 343 | syl | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  →  ( 𝑐  ∈  ( 𝑛  +o  𝑚 )  ↔  suc  𝑐  ∈  suc  ( 𝑛  +o  𝑚 ) ) ) | 
						
							| 345 | 344 | adantr | ⊢ ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  →  ( 𝑐  ∈  ( 𝑛  +o  𝑚 )  ↔  suc  𝑐  ∈  suc  ( 𝑛  +o  𝑚 ) ) ) | 
						
							| 346 | 345 | biimpa | ⊢ ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  →  suc  𝑐  ∈  suc  ( 𝑛  +o  𝑚 ) ) | 
						
							| 347 |  | eleq1 | ⊢ ( 𝑝  =  suc  𝑐  →  ( 𝑝  ∈  suc  𝑛  ↔  suc  𝑐  ∈  suc  𝑛 ) ) | 
						
							| 348 |  | fveq2 | ⊢ ( 𝑝  =  suc  𝑐  →  ( 𝑓 ‘ 𝑝 )  =  ( 𝑓 ‘ suc  𝑐 ) ) | 
						
							| 349 |  | eqeq2 | ⊢ ( 𝑝  =  suc  𝑐  →  ( ( 𝑛  +o  𝑞 )  =  𝑝  ↔  ( 𝑛  +o  𝑞 )  =  suc  𝑐 ) ) | 
						
							| 350 | 349 | riotabidv | ⊢ ( 𝑝  =  suc  𝑐  →  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 )  =  ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑐 ) ) | 
						
							| 351 | 350 | fveq2d | ⊢ ( 𝑝  =  suc  𝑐  →  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) )  =  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑐 ) ) ) | 
						
							| 352 | 347 348 351 | ifbieq12d | ⊢ ( 𝑝  =  suc  𝑐  →  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) )  =  if ( suc  𝑐  ∈  suc  𝑛 ,  ( 𝑓 ‘ suc  𝑐 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑐 ) ) ) ) | 
						
							| 353 |  | fvex | ⊢ ( 𝑓 ‘ suc  𝑐 )  ∈  V | 
						
							| 354 |  | fvex | ⊢ ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑐 ) )  ∈  V | 
						
							| 355 | 353 354 | ifex | ⊢ if ( suc  𝑐  ∈  suc  𝑛 ,  ( 𝑓 ‘ suc  𝑐 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑐 ) ) )  ∈  V | 
						
							| 356 | 352 32 355 | fvmpt | ⊢ ( suc  𝑐  ∈  suc  ( 𝑛  +o  𝑚 )  →  ( ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) ) ‘ suc  𝑐 )  =  if ( suc  𝑐  ∈  suc  𝑛 ,  ( 𝑓 ‘ suc  𝑐 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑐 ) ) ) ) | 
						
							| 357 | 346 356 | syl | ⊢ ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  →  ( ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) ) ‘ suc  𝑐 )  =  if ( suc  𝑐  ∈  suc  𝑛 ,  ( 𝑓 ‘ suc  𝑐 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  suc  𝑐 ) ) ) ) | 
						
							| 358 | 329 342 357 | 3brtr4d | ⊢ ( ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  ∧  𝑐  ∈  ( 𝑛  +o  𝑚 ) )  →  ( ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) ) ‘ 𝑐 ) 𝑅 ( ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) ) ‘ suc  𝑐 ) ) | 
						
							| 359 | 358 | ralrimiva | ⊢ ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  →  ∀ 𝑐  ∈  ( 𝑛  +o  𝑚 ) ( ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) ) ‘ 𝑐 ) 𝑅 ( ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) ) ‘ suc  𝑐 ) ) | 
						
							| 360 |  | fvex | ⊢ ( 𝑓 ‘ 𝑝 )  ∈  V | 
						
							| 361 |  | fvex | ⊢ ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) )  ∈  V | 
						
							| 362 | 360 361 | ifex | ⊢ if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) )  ∈  V | 
						
							| 363 | 362 32 | fnmpti | ⊢ ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) )  Fn  suc  ( 𝑛  +o  𝑚 ) | 
						
							| 364 | 46 | sucex | ⊢ suc  ( 𝑛  +o  𝑚 )  ∈  V | 
						
							| 365 | 364 | mptex | ⊢ ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) )  ∈  V | 
						
							| 366 |  | fneq1 | ⊢ ( ℎ  =  ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) )  →  ( ℎ  Fn  suc  ( 𝑛  +o  𝑚 )  ↔  ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) )  Fn  suc  ( 𝑛  +o  𝑚 ) ) ) | 
						
							| 367 |  | fveq1 | ⊢ ( ℎ  =  ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) )  →  ( ℎ ‘ ∅ )  =  ( ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) ) ‘ ∅ ) ) | 
						
							| 368 | 367 | eqeq1d | ⊢ ( ℎ  =  ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) )  →  ( ( ℎ ‘ ∅ )  =  𝑥  ↔  ( ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) ) ‘ ∅ )  =  𝑥 ) ) | 
						
							| 369 |  | fveq1 | ⊢ ( ℎ  =  ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) )  →  ( ℎ ‘ ( 𝑛  +o  𝑚 ) )  =  ( ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) ) ‘ ( 𝑛  +o  𝑚 ) ) ) | 
						
							| 370 | 369 | eqeq1d | ⊢ ( ℎ  =  ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) )  →  ( ( ℎ ‘ ( 𝑛  +o  𝑚 ) )  =  𝑦  ↔  ( ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) ) ‘ ( 𝑛  +o  𝑚 ) )  =  𝑦 ) ) | 
						
							| 371 | 368 370 | anbi12d | ⊢ ( ℎ  =  ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) )  →  ( ( ( ℎ ‘ ∅ )  =  𝑥  ∧  ( ℎ ‘ ( 𝑛  +o  𝑚 ) )  =  𝑦 )  ↔  ( ( ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) ) ‘ ∅ )  =  𝑥  ∧  ( ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) ) ‘ ( 𝑛  +o  𝑚 ) )  =  𝑦 ) ) ) | 
						
							| 372 |  | fveq1 | ⊢ ( ℎ  =  ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) )  →  ( ℎ ‘ 𝑐 )  =  ( ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) ) ‘ 𝑐 ) ) | 
						
							| 373 |  | fveq1 | ⊢ ( ℎ  =  ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) )  →  ( ℎ ‘ suc  𝑐 )  =  ( ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) ) ‘ suc  𝑐 ) ) | 
						
							| 374 | 372 373 | breq12d | ⊢ ( ℎ  =  ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) )  →  ( ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc  𝑐 )  ↔  ( ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) ) ‘ 𝑐 ) 𝑅 ( ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) ) ‘ suc  𝑐 ) ) ) | 
						
							| 375 | 374 | ralbidv | ⊢ ( ℎ  =  ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) )  →  ( ∀ 𝑐  ∈  ( 𝑛  +o  𝑚 ) ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc  𝑐 )  ↔  ∀ 𝑐  ∈  ( 𝑛  +o  𝑚 ) ( ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) ) ‘ 𝑐 ) 𝑅 ( ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) ) ‘ suc  𝑐 ) ) ) | 
						
							| 376 | 366 371 375 | 3anbi123d | ⊢ ( ℎ  =  ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) )  →  ( ( ℎ  Fn  suc  ( 𝑛  +o  𝑚 )  ∧  ( ( ℎ ‘ ∅ )  =  𝑥  ∧  ( ℎ ‘ ( 𝑛  +o  𝑚 ) )  =  𝑦 )  ∧  ∀ 𝑐  ∈  ( 𝑛  +o  𝑚 ) ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc  𝑐 ) )  ↔  ( ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) )  Fn  suc  ( 𝑛  +o  𝑚 )  ∧  ( ( ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) ) ‘ ∅ )  =  𝑥  ∧  ( ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) ) ‘ ( 𝑛  +o  𝑚 ) )  =  𝑦 )  ∧  ∀ 𝑐  ∈  ( 𝑛  +o  𝑚 ) ( ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) ) ‘ 𝑐 ) 𝑅 ( ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) ) ‘ suc  𝑐 ) ) ) ) | 
						
							| 377 | 365 376 | spcev | ⊢ ( ( ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) )  Fn  suc  ( 𝑛  +o  𝑚 )  ∧  ( ( ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) ) ‘ ∅ )  =  𝑥  ∧  ( ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) ) ‘ ( 𝑛  +o  𝑚 ) )  =  𝑦 )  ∧  ∀ 𝑐  ∈  ( 𝑛  +o  𝑚 ) ( ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) ) ‘ 𝑐 ) 𝑅 ( ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) ) ‘ suc  𝑐 ) )  →  ∃ ℎ ( ℎ  Fn  suc  ( 𝑛  +o  𝑚 )  ∧  ( ( ℎ ‘ ∅ )  =  𝑥  ∧  ( ℎ ‘ ( 𝑛  +o  𝑚 ) )  =  𝑦 )  ∧  ∀ 𝑐  ∈  ( 𝑛  +o  𝑚 ) ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc  𝑐 ) ) ) | 
						
							| 378 | 363 377 | mp3an1 | ⊢ ( ( ( ( ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) ) ‘ ∅ )  =  𝑥  ∧  ( ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) ) ‘ ( 𝑛  +o  𝑚 ) )  =  𝑦 )  ∧  ∀ 𝑐  ∈  ( 𝑛  +o  𝑚 ) ( ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) ) ‘ 𝑐 ) 𝑅 ( ( 𝑝  ∈  suc  ( 𝑛  +o  𝑚 )  ↦  if ( 𝑝  ∈  suc  𝑛 ,  ( 𝑓 ‘ 𝑝 ) ,  ( 𝑔 ‘ ( ℩ 𝑞  ∈  ω ( 𝑛  +o  𝑞 )  =  𝑝 ) ) ) ) ‘ suc  𝑐 ) )  →  ∃ ℎ ( ℎ  Fn  suc  ( 𝑛  +o  𝑚 )  ∧  ( ( ℎ ‘ ∅ )  =  𝑥  ∧  ( ℎ ‘ ( 𝑛  +o  𝑚 ) )  =  𝑦 )  ∧  ∀ 𝑐  ∈  ( 𝑛  +o  𝑚 ) ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc  𝑐 ) ) ) | 
						
							| 379 | 45 123 359 378 | syl21anc | ⊢ ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  →  ∃ ℎ ( ℎ  Fn  suc  ( 𝑛  +o  𝑚 )  ∧  ( ( ℎ ‘ ∅ )  =  𝑥  ∧  ( ℎ ‘ ( 𝑛  +o  𝑚 ) )  =  𝑦 )  ∧  ∀ 𝑐  ∈  ( 𝑛  +o  𝑚 ) ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc  𝑐 ) ) ) | 
						
							| 380 |  | suceq | ⊢ ( 𝑝  =  ( 𝑛  +o  𝑚 )  →  suc  𝑝  =  suc  ( 𝑛  +o  𝑚 ) ) | 
						
							| 381 | 380 | fneq2d | ⊢ ( 𝑝  =  ( 𝑛  +o  𝑚 )  →  ( ℎ  Fn  suc  𝑝  ↔  ℎ  Fn  suc  ( 𝑛  +o  𝑚 ) ) ) | 
						
							| 382 |  | fveqeq2 | ⊢ ( 𝑝  =  ( 𝑛  +o  𝑚 )  →  ( ( ℎ ‘ 𝑝 )  =  𝑦  ↔  ( ℎ ‘ ( 𝑛  +o  𝑚 ) )  =  𝑦 ) ) | 
						
							| 383 | 382 | anbi2d | ⊢ ( 𝑝  =  ( 𝑛  +o  𝑚 )  →  ( ( ( ℎ ‘ ∅ )  =  𝑥  ∧  ( ℎ ‘ 𝑝 )  =  𝑦 )  ↔  ( ( ℎ ‘ ∅ )  =  𝑥  ∧  ( ℎ ‘ ( 𝑛  +o  𝑚 ) )  =  𝑦 ) ) ) | 
						
							| 384 |  | raleq | ⊢ ( 𝑝  =  ( 𝑛  +o  𝑚 )  →  ( ∀ 𝑐  ∈  𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc  𝑐 )  ↔  ∀ 𝑐  ∈  ( 𝑛  +o  𝑚 ) ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc  𝑐 ) ) ) | 
						
							| 385 | 381 383 384 | 3anbi123d | ⊢ ( 𝑝  =  ( 𝑛  +o  𝑚 )  →  ( ( ℎ  Fn  suc  𝑝  ∧  ( ( ℎ ‘ ∅ )  =  𝑥  ∧  ( ℎ ‘ 𝑝 )  =  𝑦 )  ∧  ∀ 𝑐  ∈  𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc  𝑐 ) )  ↔  ( ℎ  Fn  suc  ( 𝑛  +o  𝑚 )  ∧  ( ( ℎ ‘ ∅ )  =  𝑥  ∧  ( ℎ ‘ ( 𝑛  +o  𝑚 ) )  =  𝑦 )  ∧  ∀ 𝑐  ∈  ( 𝑛  +o  𝑚 ) ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc  𝑐 ) ) ) ) | 
						
							| 386 | 385 | exbidv | ⊢ ( 𝑝  =  ( 𝑛  +o  𝑚 )  →  ( ∃ ℎ ( ℎ  Fn  suc  𝑝  ∧  ( ( ℎ ‘ ∅ )  =  𝑥  ∧  ( ℎ ‘ 𝑝 )  =  𝑦 )  ∧  ∀ 𝑐  ∈  𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc  𝑐 ) )  ↔  ∃ ℎ ( ℎ  Fn  suc  ( 𝑛  +o  𝑚 )  ∧  ( ( ℎ ‘ ∅ )  =  𝑥  ∧  ( ℎ ‘ ( 𝑛  +o  𝑚 ) )  =  𝑦 )  ∧  ∀ 𝑐  ∈  ( 𝑛  +o  𝑚 ) ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc  𝑐 ) ) ) ) | 
						
							| 387 | 386 | rspcev | ⊢ ( ( ( 𝑛  +o  𝑚 )  ∈  ( ω  ∖  1o )  ∧  ∃ ℎ ( ℎ  Fn  suc  ( 𝑛  +o  𝑚 )  ∧  ( ( ℎ ‘ ∅ )  =  𝑥  ∧  ( ℎ ‘ ( 𝑛  +o  𝑚 ) )  =  𝑦 )  ∧  ∀ 𝑐  ∈  ( 𝑛  +o  𝑚 ) ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc  𝑐 ) ) )  →  ∃ 𝑝  ∈  ( ω  ∖  1o ) ∃ ℎ ( ℎ  Fn  suc  𝑝  ∧  ( ( ℎ ‘ ∅ )  =  𝑥  ∧  ( ℎ ‘ 𝑝 )  =  𝑦 )  ∧  ∀ 𝑐  ∈  𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc  𝑐 ) ) ) | 
						
							| 388 | 23 379 387 | syl2an2r | ⊢ ( ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  ∧  ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) )  →  ∃ 𝑝  ∈  ( ω  ∖  1o ) ∃ ℎ ( ℎ  Fn  suc  𝑝  ∧  ( ( ℎ ‘ ∅ )  =  𝑥  ∧  ( ℎ ‘ 𝑝 )  =  𝑦 )  ∧  ∀ 𝑐  ∈  𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc  𝑐 ) ) ) | 
						
							| 389 | 388 | ex | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  →  ( ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) )  →  ∃ 𝑝  ∈  ( ω  ∖  1o ) ∃ ℎ ( ℎ  Fn  suc  𝑝  ∧  ( ( ℎ ‘ ∅ )  =  𝑥  ∧  ( ℎ ‘ 𝑝 )  =  𝑦 )  ∧  ∀ 𝑐  ∈  𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc  𝑐 ) ) ) ) | 
						
							| 390 | 389 | exlimdvv | ⊢ ( ( 𝑛  ∈  ( ω  ∖  1o )  ∧  𝑚  ∈  ( ω  ∖  1o ) )  →  ( ∃ 𝑓 ∃ 𝑔 ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) )  →  ∃ 𝑝  ∈  ( ω  ∖  1o ) ∃ ℎ ( ℎ  Fn  suc  𝑝  ∧  ( ( ℎ ‘ ∅ )  =  𝑥  ∧  ( ℎ ‘ 𝑝 )  =  𝑦 )  ∧  ∀ 𝑐  ∈  𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc  𝑐 ) ) ) ) | 
						
							| 391 | 390 | rexlimivv | ⊢ ( ∃ 𝑛  ∈  ( ω  ∖  1o ) ∃ 𝑚  ∈  ( ω  ∖  1o ) ∃ 𝑓 ∃ 𝑔 ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) )  →  ∃ 𝑝  ∈  ( ω  ∖  1o ) ∃ ℎ ( ℎ  Fn  suc  𝑝  ∧  ( ( ℎ ‘ ∅ )  =  𝑥  ∧  ( ℎ ‘ 𝑝 )  =  𝑦 )  ∧  ∀ 𝑐  ∈  𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc  𝑐 ) ) ) | 
						
							| 392 | 391 | exlimiv | ⊢ ( ∃ 𝑧 ∃ 𝑛  ∈  ( ω  ∖  1o ) ∃ 𝑚  ∈  ( ω  ∖  1o ) ∃ 𝑓 ∃ 𝑔 ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) )  →  ∃ 𝑝  ∈  ( ω  ∖  1o ) ∃ ℎ ( ℎ  Fn  suc  𝑝  ∧  ( ( ℎ ‘ ∅ )  =  𝑥  ∧  ( ℎ ‘ 𝑝 )  =  𝑦 )  ∧  ∀ 𝑐  ∈  𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc  𝑐 ) ) ) | 
						
							| 393 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 394 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 395 | 393 394 | opelco | ⊢ ( 〈 𝑥 ,  𝑦 〉  ∈  ( t++ 𝑅  ∘  t++ 𝑅 )  ↔  ∃ 𝑧 ( 𝑥 t++ 𝑅 𝑧  ∧  𝑧 t++ 𝑅 𝑦 ) ) | 
						
							| 396 |  | reeanv | ⊢ ( ∃ 𝑛  ∈  ( ω  ∖  1o ) ∃ 𝑚  ∈  ( ω  ∖  1o ) ( ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ∃ 𝑔 ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) )  ↔  ( ∃ 𝑛  ∈  ( ω  ∖  1o ) ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ∃ 𝑚  ∈  ( ω  ∖  1o ) ∃ 𝑔 ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) ) | 
						
							| 397 |  | eeanv | ⊢ ( ∃ 𝑓 ∃ 𝑔 ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) )  ↔  ( ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ∃ 𝑔 ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) ) | 
						
							| 398 | 397 | 2rexbii | ⊢ ( ∃ 𝑛  ∈  ( ω  ∖  1o ) ∃ 𝑚  ∈  ( ω  ∖  1o ) ∃ 𝑓 ∃ 𝑔 ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) )  ↔  ∃ 𝑛  ∈  ( ω  ∖  1o ) ∃ 𝑚  ∈  ( ω  ∖  1o ) ( ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ∃ 𝑔 ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) ) | 
						
							| 399 |  | brttrcl | ⊢ ( 𝑥 t++ 𝑅 𝑧  ↔  ∃ 𝑛  ∈  ( ω  ∖  1o ) ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) ) ) | 
						
							| 400 |  | brttrcl | ⊢ ( 𝑧 t++ 𝑅 𝑦  ↔  ∃ 𝑚  ∈  ( ω  ∖  1o ) ∃ 𝑔 ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) | 
						
							| 401 | 399 400 | anbi12i | ⊢ ( ( 𝑥 t++ 𝑅 𝑧  ∧  𝑧 t++ 𝑅 𝑦 )  ↔  ( ∃ 𝑛  ∈  ( ω  ∖  1o ) ∃ 𝑓 ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ∃ 𝑚  ∈  ( ω  ∖  1o ) ∃ 𝑔 ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) ) | 
						
							| 402 | 396 398 401 | 3bitr4ri | ⊢ ( ( 𝑥 t++ 𝑅 𝑧  ∧  𝑧 t++ 𝑅 𝑦 )  ↔  ∃ 𝑛  ∈  ( ω  ∖  1o ) ∃ 𝑚  ∈  ( ω  ∖  1o ) ∃ 𝑓 ∃ 𝑔 ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) ) | 
						
							| 403 | 402 | exbii | ⊢ ( ∃ 𝑧 ( 𝑥 t++ 𝑅 𝑧  ∧  𝑧 t++ 𝑅 𝑦 )  ↔  ∃ 𝑧 ∃ 𝑛  ∈  ( ω  ∖  1o ) ∃ 𝑚  ∈  ( ω  ∖  1o ) ∃ 𝑓 ∃ 𝑔 ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) ) | 
						
							| 404 | 395 403 | bitri | ⊢ ( 〈 𝑥 ,  𝑦 〉  ∈  ( t++ 𝑅  ∘  t++ 𝑅 )  ↔  ∃ 𝑧 ∃ 𝑛  ∈  ( ω  ∖  1o ) ∃ 𝑚  ∈  ( ω  ∖  1o ) ∃ 𝑓 ∃ 𝑔 ( ( 𝑓  Fn  suc  𝑛  ∧  ( ( 𝑓 ‘ ∅ )  =  𝑥  ∧  ( 𝑓 ‘ 𝑛 )  =  𝑧 )  ∧  ∀ 𝑎  ∈  𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc  𝑎 ) )  ∧  ( 𝑔  Fn  suc  𝑚  ∧  ( ( 𝑔 ‘ ∅ )  =  𝑧  ∧  ( 𝑔 ‘ 𝑚 )  =  𝑦 )  ∧  ∀ 𝑏  ∈  𝑚 ( 𝑔 ‘ 𝑏 ) 𝑅 ( 𝑔 ‘ suc  𝑏 ) ) ) ) | 
						
							| 405 |  | df-br | ⊢ ( 𝑥 t++ 𝑅 𝑦  ↔  〈 𝑥 ,  𝑦 〉  ∈  t++ 𝑅 ) | 
						
							| 406 |  | brttrcl | ⊢ ( 𝑥 t++ 𝑅 𝑦  ↔  ∃ 𝑝  ∈  ( ω  ∖  1o ) ∃ ℎ ( ℎ  Fn  suc  𝑝  ∧  ( ( ℎ ‘ ∅ )  =  𝑥  ∧  ( ℎ ‘ 𝑝 )  =  𝑦 )  ∧  ∀ 𝑐  ∈  𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc  𝑐 ) ) ) | 
						
							| 407 | 405 406 | bitr3i | ⊢ ( 〈 𝑥 ,  𝑦 〉  ∈  t++ 𝑅  ↔  ∃ 𝑝  ∈  ( ω  ∖  1o ) ∃ ℎ ( ℎ  Fn  suc  𝑝  ∧  ( ( ℎ ‘ ∅ )  =  𝑥  ∧  ( ℎ ‘ 𝑝 )  =  𝑦 )  ∧  ∀ 𝑐  ∈  𝑝 ( ℎ ‘ 𝑐 ) 𝑅 ( ℎ ‘ suc  𝑐 ) ) ) | 
						
							| 408 | 392 404 407 | 3imtr4i | ⊢ ( 〈 𝑥 ,  𝑦 〉  ∈  ( t++ 𝑅  ∘  t++ 𝑅 )  →  〈 𝑥 ,  𝑦 〉  ∈  t++ 𝑅 ) | 
						
							| 409 | 1 408 | relssi | ⊢ ( t++ 𝑅  ∘  t++ 𝑅 )  ⊆  t++ 𝑅 |