Metamath Proof Explorer


Theorem ttukey

Description: The Teichmüller-Tukey Lemma, an Axiom of Choice equivalent. If A is a nonempty collection of finite character, then A has a maximal element with respect to inclusion. Here "finite character" means that x e. A iff every finite subset of x is in A . (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Hypothesis ttukey.1 𝐴 ∈ V
Assertion ttukey ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ( 𝑥𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) → ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦 )

Proof

Step Hyp Ref Expression
1 ttukey.1 𝐴 ∈ V
2 1 uniex 𝐴 ∈ V
3 numth3 ( 𝐴 ∈ V → 𝐴 ∈ dom card )
4 2 3 ax-mp 𝐴 ∈ dom card
5 ttukeyg ( ( 𝐴 ∈ dom card ∧ 𝐴 ≠ ∅ ∧ ∀ 𝑥 ( 𝑥𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) → ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦 )
6 4 5 mp3an1 ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ( 𝑥𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) → ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥𝑦 )