Step |
Hyp |
Ref |
Expression |
1 |
|
difss |
⊢ ( ∪ 𝐴 ∖ 𝐵 ) ⊆ ∪ 𝐴 |
2 |
|
ssnum |
⊢ ( ( ∪ 𝐴 ∈ dom card ∧ ( ∪ 𝐴 ∖ 𝐵 ) ⊆ ∪ 𝐴 ) → ( ∪ 𝐴 ∖ 𝐵 ) ∈ dom card ) |
3 |
1 2
|
mpan2 |
⊢ ( ∪ 𝐴 ∈ dom card → ( ∪ 𝐴 ∖ 𝐵 ) ∈ dom card ) |
4 |
|
isnum3 |
⊢ ( ( ∪ 𝐴 ∖ 𝐵 ) ∈ dom card ↔ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ≈ ( ∪ 𝐴 ∖ 𝐵 ) ) |
5 |
|
bren |
⊢ ( ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ≈ ( ∪ 𝐴 ∖ 𝐵 ) ↔ ∃ 𝑓 𝑓 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –1-1-onto→ ( ∪ 𝐴 ∖ 𝐵 ) ) |
6 |
4 5
|
bitri |
⊢ ( ( ∪ 𝐴 ∖ 𝐵 ) ∈ dom card ↔ ∃ 𝑓 𝑓 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –1-1-onto→ ( ∪ 𝐴 ∖ 𝐵 ) ) |
7 |
|
simp1 |
⊢ ( ( 𝑓 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –1-1-onto→ ( ∪ 𝐴 ∖ 𝐵 ) ∧ 𝐵 ∈ 𝐴 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) → 𝑓 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –1-1-onto→ ( ∪ 𝐴 ∖ 𝐵 ) ) |
8 |
|
simp2 |
⊢ ( ( 𝑓 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –1-1-onto→ ( ∪ 𝐴 ∖ 𝐵 ) ∧ 𝐵 ∈ 𝐴 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) → 𝐵 ∈ 𝐴 ) |
9 |
|
simp3 |
⊢ ( ( 𝑓 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –1-1-onto→ ( ∪ 𝐴 ∖ 𝐵 ) ∧ 𝐵 ∈ 𝐴 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) → ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) |
10 |
|
dmeq |
⊢ ( 𝑤 = 𝑧 → dom 𝑤 = dom 𝑧 ) |
11 |
10
|
unieqd |
⊢ ( 𝑤 = 𝑧 → ∪ dom 𝑤 = ∪ dom 𝑧 ) |
12 |
10 11
|
eqeq12d |
⊢ ( 𝑤 = 𝑧 → ( dom 𝑤 = ∪ dom 𝑤 ↔ dom 𝑧 = ∪ dom 𝑧 ) ) |
13 |
10
|
eqeq1d |
⊢ ( 𝑤 = 𝑧 → ( dom 𝑤 = ∅ ↔ dom 𝑧 = ∅ ) ) |
14 |
|
rneq |
⊢ ( 𝑤 = 𝑧 → ran 𝑤 = ran 𝑧 ) |
15 |
14
|
unieqd |
⊢ ( 𝑤 = 𝑧 → ∪ ran 𝑤 = ∪ ran 𝑧 ) |
16 |
13 15
|
ifbieq2d |
⊢ ( 𝑤 = 𝑧 → if ( dom 𝑤 = ∅ , 𝐵 , ∪ ran 𝑤 ) = if ( dom 𝑧 = ∅ , 𝐵 , ∪ ran 𝑧 ) ) |
17 |
|
id |
⊢ ( 𝑤 = 𝑧 → 𝑤 = 𝑧 ) |
18 |
17 11
|
fveq12d |
⊢ ( 𝑤 = 𝑧 → ( 𝑤 ‘ ∪ dom 𝑤 ) = ( 𝑧 ‘ ∪ dom 𝑧 ) ) |
19 |
11
|
fveq2d |
⊢ ( 𝑤 = 𝑧 → ( 𝑓 ‘ ∪ dom 𝑤 ) = ( 𝑓 ‘ ∪ dom 𝑧 ) ) |
20 |
19
|
sneqd |
⊢ ( 𝑤 = 𝑧 → { ( 𝑓 ‘ ∪ dom 𝑤 ) } = { ( 𝑓 ‘ ∪ dom 𝑧 ) } ) |
21 |
18 20
|
uneq12d |
⊢ ( 𝑤 = 𝑧 → ( ( 𝑤 ‘ ∪ dom 𝑤 ) ∪ { ( 𝑓 ‘ ∪ dom 𝑤 ) } ) = ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝑓 ‘ ∪ dom 𝑧 ) } ) ) |
22 |
21
|
eleq1d |
⊢ ( 𝑤 = 𝑧 → ( ( ( 𝑤 ‘ ∪ dom 𝑤 ) ∪ { ( 𝑓 ‘ ∪ dom 𝑤 ) } ) ∈ 𝐴 ↔ ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝑓 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 ) ) |
23 |
22 20
|
ifbieq1d |
⊢ ( 𝑤 = 𝑧 → if ( ( ( 𝑤 ‘ ∪ dom 𝑤 ) ∪ { ( 𝑓 ‘ ∪ dom 𝑤 ) } ) ∈ 𝐴 , { ( 𝑓 ‘ ∪ dom 𝑤 ) } , ∅ ) = if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝑓 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝑓 ‘ ∪ dom 𝑧 ) } , ∅ ) ) |
24 |
18 23
|
uneq12d |
⊢ ( 𝑤 = 𝑧 → ( ( 𝑤 ‘ ∪ dom 𝑤 ) ∪ if ( ( ( 𝑤 ‘ ∪ dom 𝑤 ) ∪ { ( 𝑓 ‘ ∪ dom 𝑤 ) } ) ∈ 𝐴 , { ( 𝑓 ‘ ∪ dom 𝑤 ) } , ∅ ) ) = ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝑓 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝑓 ‘ ∪ dom 𝑧 ) } , ∅ ) ) ) |
25 |
12 16 24
|
ifbieq12d |
⊢ ( 𝑤 = 𝑧 → if ( dom 𝑤 = ∪ dom 𝑤 , if ( dom 𝑤 = ∅ , 𝐵 , ∪ ran 𝑤 ) , ( ( 𝑤 ‘ ∪ dom 𝑤 ) ∪ if ( ( ( 𝑤 ‘ ∪ dom 𝑤 ) ∪ { ( 𝑓 ‘ ∪ dom 𝑤 ) } ) ∈ 𝐴 , { ( 𝑓 ‘ ∪ dom 𝑤 ) } , ∅ ) ) ) = if ( dom 𝑧 = ∪ dom 𝑧 , if ( dom 𝑧 = ∅ , 𝐵 , ∪ ran 𝑧 ) , ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝑓 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝑓 ‘ ∪ dom 𝑧 ) } , ∅ ) ) ) ) |
26 |
25
|
cbvmptv |
⊢ ( 𝑤 ∈ V ↦ if ( dom 𝑤 = ∪ dom 𝑤 , if ( dom 𝑤 = ∅ , 𝐵 , ∪ ran 𝑤 ) , ( ( 𝑤 ‘ ∪ dom 𝑤 ) ∪ if ( ( ( 𝑤 ‘ ∪ dom 𝑤 ) ∪ { ( 𝑓 ‘ ∪ dom 𝑤 ) } ) ∈ 𝐴 , { ( 𝑓 ‘ ∪ dom 𝑤 ) } , ∅ ) ) ) ) = ( 𝑧 ∈ V ↦ if ( dom 𝑧 = ∪ dom 𝑧 , if ( dom 𝑧 = ∅ , 𝐵 , ∪ ran 𝑧 ) , ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝑓 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝑓 ‘ ∪ dom 𝑧 ) } , ∅ ) ) ) ) |
27 |
|
recseq |
⊢ ( ( 𝑤 ∈ V ↦ if ( dom 𝑤 = ∪ dom 𝑤 , if ( dom 𝑤 = ∅ , 𝐵 , ∪ ran 𝑤 ) , ( ( 𝑤 ‘ ∪ dom 𝑤 ) ∪ if ( ( ( 𝑤 ‘ ∪ dom 𝑤 ) ∪ { ( 𝑓 ‘ ∪ dom 𝑤 ) } ) ∈ 𝐴 , { ( 𝑓 ‘ ∪ dom 𝑤 ) } , ∅ ) ) ) ) = ( 𝑧 ∈ V ↦ if ( dom 𝑧 = ∪ dom 𝑧 , if ( dom 𝑧 = ∅ , 𝐵 , ∪ ran 𝑧 ) , ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝑓 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝑓 ‘ ∪ dom 𝑧 ) } , ∅ ) ) ) ) → recs ( ( 𝑤 ∈ V ↦ if ( dom 𝑤 = ∪ dom 𝑤 , if ( dom 𝑤 = ∅ , 𝐵 , ∪ ran 𝑤 ) , ( ( 𝑤 ‘ ∪ dom 𝑤 ) ∪ if ( ( ( 𝑤 ‘ ∪ dom 𝑤 ) ∪ { ( 𝑓 ‘ ∪ dom 𝑤 ) } ) ∈ 𝐴 , { ( 𝑓 ‘ ∪ dom 𝑤 ) } , ∅ ) ) ) ) ) = recs ( ( 𝑧 ∈ V ↦ if ( dom 𝑧 = ∪ dom 𝑧 , if ( dom 𝑧 = ∅ , 𝐵 , ∪ ran 𝑧 ) , ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝑓 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝑓 ‘ ∪ dom 𝑧 ) } , ∅ ) ) ) ) ) ) |
28 |
26 27
|
ax-mp |
⊢ recs ( ( 𝑤 ∈ V ↦ if ( dom 𝑤 = ∪ dom 𝑤 , if ( dom 𝑤 = ∅ , 𝐵 , ∪ ran 𝑤 ) , ( ( 𝑤 ‘ ∪ dom 𝑤 ) ∪ if ( ( ( 𝑤 ‘ ∪ dom 𝑤 ) ∪ { ( 𝑓 ‘ ∪ dom 𝑤 ) } ) ∈ 𝐴 , { ( 𝑓 ‘ ∪ dom 𝑤 ) } , ∅ ) ) ) ) ) = recs ( ( 𝑧 ∈ V ↦ if ( dom 𝑧 = ∪ dom 𝑧 , if ( dom 𝑧 = ∅ , 𝐵 , ∪ ran 𝑧 ) , ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝑓 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝑓 ‘ ∪ dom 𝑧 ) } , ∅ ) ) ) ) ) |
29 |
7 8 9 28
|
ttukeylem7 |
⊢ ( ( 𝑓 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –1-1-onto→ ( ∪ 𝐴 ∖ 𝐵 ) ∧ 𝐵 ∈ 𝐴 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) ) |
30 |
29
|
3expib |
⊢ ( 𝑓 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –1-1-onto→ ( ∪ 𝐴 ∖ 𝐵 ) → ( ( 𝐵 ∈ 𝐴 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) ) ) |
31 |
30
|
exlimiv |
⊢ ( ∃ 𝑓 𝑓 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –1-1-onto→ ( ∪ 𝐴 ∖ 𝐵 ) → ( ( 𝐵 ∈ 𝐴 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) ) ) |
32 |
6 31
|
sylbi |
⊢ ( ( ∪ 𝐴 ∖ 𝐵 ) ∈ dom card → ( ( 𝐵 ∈ 𝐴 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) ) ) |
33 |
3 32
|
syl |
⊢ ( ∪ 𝐴 ∈ dom card → ( ( 𝐵 ∈ 𝐴 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) ) ) |
34 |
33
|
3impib |
⊢ ( ( ∪ 𝐴 ∈ dom card ∧ 𝐵 ∈ 𝐴 ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) → ∃ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ⊊ 𝑦 ) ) |