Metamath Proof Explorer


Theorem ttukeylem1

Description: Lemma for ttukey . Expand out the property of being an element of a property of finite character. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Hypotheses ttukeylem.1 ( 𝜑𝐹 : ( card ‘ ( 𝐴𝐵 ) ) –1-1-onto→ ( 𝐴𝐵 ) )
ttukeylem.2 ( 𝜑𝐵𝐴 )
ttukeylem.3 ( 𝜑 → ∀ 𝑥 ( 𝑥𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) )
Assertion ttukeylem1 ( 𝜑 → ( 𝐶𝐴 ↔ ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 ttukeylem.1 ( 𝜑𝐹 : ( card ‘ ( 𝐴𝐵 ) ) –1-1-onto→ ( 𝐴𝐵 ) )
2 ttukeylem.2 ( 𝜑𝐵𝐴 )
3 ttukeylem.3 ( 𝜑 → ∀ 𝑥 ( 𝑥𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) )
4 elex ( 𝐶𝐴𝐶 ∈ V )
5 4 a1i ( 𝜑 → ( 𝐶𝐴𝐶 ∈ V ) )
6 id ( ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝐴 → ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝐴 )
7 ssun1 𝐴 ⊆ ( 𝐴𝐵 )
8 undif1 ( ( 𝐴𝐵 ) ∪ 𝐵 ) = ( 𝐴𝐵 )
9 7 8 sseqtrri 𝐴 ⊆ ( ( 𝐴𝐵 ) ∪ 𝐵 )
10 fvex ( card ‘ ( 𝐴𝐵 ) ) ∈ V
11 f1ofo ( 𝐹 : ( card ‘ ( 𝐴𝐵 ) ) –1-1-onto→ ( 𝐴𝐵 ) → 𝐹 : ( card ‘ ( 𝐴𝐵 ) ) –onto→ ( 𝐴𝐵 ) )
12 1 11 syl ( 𝜑𝐹 : ( card ‘ ( 𝐴𝐵 ) ) –onto→ ( 𝐴𝐵 ) )
13 fornex ( ( card ‘ ( 𝐴𝐵 ) ) ∈ V → ( 𝐹 : ( card ‘ ( 𝐴𝐵 ) ) –onto→ ( 𝐴𝐵 ) → ( 𝐴𝐵 ) ∈ V ) )
14 10 12 13 mpsyl ( 𝜑 → ( 𝐴𝐵 ) ∈ V )
15 unexg ( ( ( 𝐴𝐵 ) ∈ V ∧ 𝐵𝐴 ) → ( ( 𝐴𝐵 ) ∪ 𝐵 ) ∈ V )
16 14 2 15 syl2anc ( 𝜑 → ( ( 𝐴𝐵 ) ∪ 𝐵 ) ∈ V )
17 ssexg ( ( 𝐴 ⊆ ( ( 𝐴𝐵 ) ∪ 𝐵 ) ∧ ( ( 𝐴𝐵 ) ∪ 𝐵 ) ∈ V ) → 𝐴 ∈ V )
18 9 16 17 sylancr ( 𝜑 𝐴 ∈ V )
19 uniexb ( 𝐴 ∈ V ↔ 𝐴 ∈ V )
20 18 19 sylibr ( 𝜑𝐴 ∈ V )
21 ssexg ( ( ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝐴𝐴 ∈ V ) → ( 𝒫 𝐶 ∩ Fin ) ∈ V )
22 6 20 21 syl2anr ( ( 𝜑 ∧ ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝐴 ) → ( 𝒫 𝐶 ∩ Fin ) ∈ V )
23 infpwfidom ( ( 𝒫 𝐶 ∩ Fin ) ∈ V → 𝐶 ≼ ( 𝒫 𝐶 ∩ Fin ) )
24 reldom Rel ≼
25 24 brrelex1i ( 𝐶 ≼ ( 𝒫 𝐶 ∩ Fin ) → 𝐶 ∈ V )
26 22 23 25 3syl ( ( 𝜑 ∧ ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝐴 ) → 𝐶 ∈ V )
27 26 ex ( 𝜑 → ( ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝐴𝐶 ∈ V ) )
28 eleq1 ( 𝑥 = 𝐶 → ( 𝑥𝐴𝐶𝐴 ) )
29 pweq ( 𝑥 = 𝐶 → 𝒫 𝑥 = 𝒫 𝐶 )
30 29 ineq1d ( 𝑥 = 𝐶 → ( 𝒫 𝑥 ∩ Fin ) = ( 𝒫 𝐶 ∩ Fin ) )
31 30 sseq1d ( 𝑥 = 𝐶 → ( ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ↔ ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝐴 ) )
32 28 31 bibi12d ( 𝑥 = 𝐶 → ( ( 𝑥𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ↔ ( 𝐶𝐴 ↔ ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝐴 ) ) )
33 32 spcgv ( 𝐶 ∈ V → ( ∀ 𝑥 ( 𝑥𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) → ( 𝐶𝐴 ↔ ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝐴 ) ) )
34 3 33 syl5com ( 𝜑 → ( 𝐶 ∈ V → ( 𝐶𝐴 ↔ ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝐴 ) ) )
35 5 27 34 pm5.21ndd ( 𝜑 → ( 𝐶𝐴 ↔ ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝐴 ) )