Step |
Hyp |
Ref |
Expression |
1 |
|
ttukeylem.1 |
⊢ ( 𝜑 → 𝐹 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –1-1-onto→ ( ∪ 𝐴 ∖ 𝐵 ) ) |
2 |
|
ttukeylem.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) |
3 |
|
ttukeylem.3 |
⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) |
4 |
|
elex |
⊢ ( 𝐶 ∈ 𝐴 → 𝐶 ∈ V ) |
5 |
4
|
a1i |
⊢ ( 𝜑 → ( 𝐶 ∈ 𝐴 → 𝐶 ∈ V ) ) |
6 |
|
id |
⊢ ( ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝐴 → ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝐴 ) |
7 |
|
ssun1 |
⊢ ∪ 𝐴 ⊆ ( ∪ 𝐴 ∪ 𝐵 ) |
8 |
|
undif1 |
⊢ ( ( ∪ 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) = ( ∪ 𝐴 ∪ 𝐵 ) |
9 |
7 8
|
sseqtrri |
⊢ ∪ 𝐴 ⊆ ( ( ∪ 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) |
10 |
|
fvex |
⊢ ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∈ V |
11 |
|
f1ofo |
⊢ ( 𝐹 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –1-1-onto→ ( ∪ 𝐴 ∖ 𝐵 ) → 𝐹 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –onto→ ( ∪ 𝐴 ∖ 𝐵 ) ) |
12 |
1 11
|
syl |
⊢ ( 𝜑 → 𝐹 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –onto→ ( ∪ 𝐴 ∖ 𝐵 ) ) |
13 |
|
fornex |
⊢ ( ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) ∈ V → ( 𝐹 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –onto→ ( ∪ 𝐴 ∖ 𝐵 ) → ( ∪ 𝐴 ∖ 𝐵 ) ∈ V ) ) |
14 |
10 12 13
|
mpsyl |
⊢ ( 𝜑 → ( ∪ 𝐴 ∖ 𝐵 ) ∈ V ) |
15 |
|
unexg |
⊢ ( ( ( ∪ 𝐴 ∖ 𝐵 ) ∈ V ∧ 𝐵 ∈ 𝐴 ) → ( ( ∪ 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) ∈ V ) |
16 |
14 2 15
|
syl2anc |
⊢ ( 𝜑 → ( ( ∪ 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) ∈ V ) |
17 |
|
ssexg |
⊢ ( ( ∪ 𝐴 ⊆ ( ( ∪ 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) ∧ ( ( ∪ 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) ∈ V ) → ∪ 𝐴 ∈ V ) |
18 |
9 16 17
|
sylancr |
⊢ ( 𝜑 → ∪ 𝐴 ∈ V ) |
19 |
|
uniexb |
⊢ ( 𝐴 ∈ V ↔ ∪ 𝐴 ∈ V ) |
20 |
18 19
|
sylibr |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
21 |
|
ssexg |
⊢ ( ( ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝐴 ∧ 𝐴 ∈ V ) → ( 𝒫 𝐶 ∩ Fin ) ∈ V ) |
22 |
6 20 21
|
syl2anr |
⊢ ( ( 𝜑 ∧ ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝐴 ) → ( 𝒫 𝐶 ∩ Fin ) ∈ V ) |
23 |
|
infpwfidom |
⊢ ( ( 𝒫 𝐶 ∩ Fin ) ∈ V → 𝐶 ≼ ( 𝒫 𝐶 ∩ Fin ) ) |
24 |
|
reldom |
⊢ Rel ≼ |
25 |
24
|
brrelex1i |
⊢ ( 𝐶 ≼ ( 𝒫 𝐶 ∩ Fin ) → 𝐶 ∈ V ) |
26 |
22 23 25
|
3syl |
⊢ ( ( 𝜑 ∧ ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝐴 ) → 𝐶 ∈ V ) |
27 |
26
|
ex |
⊢ ( 𝜑 → ( ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝐴 → 𝐶 ∈ V ) ) |
28 |
|
eleq1 |
⊢ ( 𝑥 = 𝐶 → ( 𝑥 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴 ) ) |
29 |
|
pweq |
⊢ ( 𝑥 = 𝐶 → 𝒫 𝑥 = 𝒫 𝐶 ) |
30 |
29
|
ineq1d |
⊢ ( 𝑥 = 𝐶 → ( 𝒫 𝑥 ∩ Fin ) = ( 𝒫 𝐶 ∩ Fin ) ) |
31 |
30
|
sseq1d |
⊢ ( 𝑥 = 𝐶 → ( ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ↔ ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝐴 ) ) |
32 |
28 31
|
bibi12d |
⊢ ( 𝑥 = 𝐶 → ( ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ↔ ( 𝐶 ∈ 𝐴 ↔ ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝐴 ) ) ) |
33 |
32
|
spcgv |
⊢ ( 𝐶 ∈ V → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) → ( 𝐶 ∈ 𝐴 ↔ ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝐴 ) ) ) |
34 |
3 33
|
syl5com |
⊢ ( 𝜑 → ( 𝐶 ∈ V → ( 𝐶 ∈ 𝐴 ↔ ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝐴 ) ) ) |
35 |
5 27 34
|
pm5.21ndd |
⊢ ( 𝜑 → ( 𝐶 ∈ 𝐴 ↔ ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝐴 ) ) |