Step |
Hyp |
Ref |
Expression |
1 |
|
ttukeylem.1 |
⊢ ( 𝜑 → 𝐹 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –1-1-onto→ ( ∪ 𝐴 ∖ 𝐵 ) ) |
2 |
|
ttukeylem.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) |
3 |
|
ttukeylem.3 |
⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) |
4 |
|
ttukeylem.4 |
⊢ 𝐺 = recs ( ( 𝑧 ∈ V ↦ if ( dom 𝑧 = ∪ dom 𝑧 , if ( dom 𝑧 = ∅ , 𝐵 , ∪ ran 𝑧 ) , ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝐹 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ dom 𝑧 ) } , ∅ ) ) ) ) ) |
5 |
4
|
tfr2 |
⊢ ( 𝐶 ∈ On → ( 𝐺 ‘ 𝐶 ) = ( ( 𝑧 ∈ V ↦ if ( dom 𝑧 = ∪ dom 𝑧 , if ( dom 𝑧 = ∅ , 𝐵 , ∪ ran 𝑧 ) , ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝐹 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ dom 𝑧 ) } , ∅ ) ) ) ) ‘ ( 𝐺 ↾ 𝐶 ) ) ) |
6 |
5
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ On ) → ( 𝐺 ‘ 𝐶 ) = ( ( 𝑧 ∈ V ↦ if ( dom 𝑧 = ∪ dom 𝑧 , if ( dom 𝑧 = ∅ , 𝐵 , ∪ ran 𝑧 ) , ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝐹 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ dom 𝑧 ) } , ∅ ) ) ) ) ‘ ( 𝐺 ↾ 𝐶 ) ) ) |
7 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ On ) → ( 𝑧 ∈ V ↦ if ( dom 𝑧 = ∪ dom 𝑧 , if ( dom 𝑧 = ∅ , 𝐵 , ∪ ran 𝑧 ) , ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝐹 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ dom 𝑧 ) } , ∅ ) ) ) ) = ( 𝑧 ∈ V ↦ if ( dom 𝑧 = ∪ dom 𝑧 , if ( dom 𝑧 = ∅ , 𝐵 , ∪ ran 𝑧 ) , ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝐹 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ dom 𝑧 ) } , ∅ ) ) ) ) ) |
8 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → 𝑧 = ( 𝐺 ↾ 𝐶 ) ) |
9 |
8
|
dmeqd |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → dom 𝑧 = dom ( 𝐺 ↾ 𝐶 ) ) |
10 |
4
|
tfr1 |
⊢ 𝐺 Fn On |
11 |
|
onss |
⊢ ( 𝐶 ∈ On → 𝐶 ⊆ On ) |
12 |
11
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → 𝐶 ⊆ On ) |
13 |
|
fnssres |
⊢ ( ( 𝐺 Fn On ∧ 𝐶 ⊆ On ) → ( 𝐺 ↾ 𝐶 ) Fn 𝐶 ) |
14 |
10 12 13
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → ( 𝐺 ↾ 𝐶 ) Fn 𝐶 ) |
15 |
14
|
fndmd |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → dom ( 𝐺 ↾ 𝐶 ) = 𝐶 ) |
16 |
9 15
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → dom 𝑧 = 𝐶 ) |
17 |
16
|
unieqd |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → ∪ dom 𝑧 = ∪ 𝐶 ) |
18 |
16 17
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → ( dom 𝑧 = ∪ dom 𝑧 ↔ 𝐶 = ∪ 𝐶 ) ) |
19 |
16
|
eqeq1d |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → ( dom 𝑧 = ∅ ↔ 𝐶 = ∅ ) ) |
20 |
8
|
rneqd |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → ran 𝑧 = ran ( 𝐺 ↾ 𝐶 ) ) |
21 |
|
df-ima |
⊢ ( 𝐺 “ 𝐶 ) = ran ( 𝐺 ↾ 𝐶 ) |
22 |
20 21
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → ran 𝑧 = ( 𝐺 “ 𝐶 ) ) |
23 |
22
|
unieqd |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → ∪ ran 𝑧 = ∪ ( 𝐺 “ 𝐶 ) ) |
24 |
19 23
|
ifbieq2d |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → if ( dom 𝑧 = ∅ , 𝐵 , ∪ ran 𝑧 ) = if ( 𝐶 = ∅ , 𝐵 , ∪ ( 𝐺 “ 𝐶 ) ) ) |
25 |
8 17
|
fveq12d |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → ( 𝑧 ‘ ∪ dom 𝑧 ) = ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ 𝐶 ) ) |
26 |
17
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → ( 𝐹 ‘ ∪ dom 𝑧 ) = ( 𝐹 ‘ ∪ 𝐶 ) ) |
27 |
26
|
sneqd |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → { ( 𝐹 ‘ ∪ dom 𝑧 ) } = { ( 𝐹 ‘ ∪ 𝐶 ) } ) |
28 |
25 27
|
uneq12d |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝐹 ‘ ∪ dom 𝑧 ) } ) = ( ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ) |
29 |
28
|
eleq1d |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝐹 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 ↔ ( ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ∈ 𝐴 ) ) |
30 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → ∅ = ∅ ) |
31 |
29 27 30
|
ifbieq12d |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝐹 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ dom 𝑧 ) } , ∅ ) = if ( ( ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝐶 ) } , ∅ ) ) |
32 |
25 31
|
uneq12d |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝐹 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ dom 𝑧 ) } , ∅ ) ) = ( ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ 𝐶 ) ∪ if ( ( ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝐶 ) } , ∅ ) ) ) |
33 |
18 24 32
|
ifbieq12d |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → if ( dom 𝑧 = ∪ dom 𝑧 , if ( dom 𝑧 = ∅ , 𝐵 , ∪ ran 𝑧 ) , ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝐹 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ dom 𝑧 ) } , ∅ ) ) ) = if ( 𝐶 = ∪ 𝐶 , if ( 𝐶 = ∅ , 𝐵 , ∪ ( 𝐺 “ 𝐶 ) ) , ( ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ 𝐶 ) ∪ if ( ( ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝐶 ) } , ∅ ) ) ) ) |
34 |
|
onuni |
⊢ ( 𝐶 ∈ On → ∪ 𝐶 ∈ On ) |
35 |
34
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ∪ 𝐶 ∈ On ) |
36 |
|
sucidg |
⊢ ( ∪ 𝐶 ∈ On → ∪ 𝐶 ∈ suc ∪ 𝐶 ) |
37 |
35 36
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ∪ 𝐶 ∈ suc ∪ 𝐶 ) |
38 |
|
eloni |
⊢ ( 𝐶 ∈ On → Ord 𝐶 ) |
39 |
38
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → Ord 𝐶 ) |
40 |
|
orduniorsuc |
⊢ ( Ord 𝐶 → ( 𝐶 = ∪ 𝐶 ∨ 𝐶 = suc ∪ 𝐶 ) ) |
41 |
39 40
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → ( 𝐶 = ∪ 𝐶 ∨ 𝐶 = suc ∪ 𝐶 ) ) |
42 |
41
|
orcanai |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → 𝐶 = suc ∪ 𝐶 ) |
43 |
37 42
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ∪ 𝐶 ∈ 𝐶 ) |
44 |
43
|
fvresd |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ 𝐶 ) = ( 𝐺 ‘ ∪ 𝐶 ) ) |
45 |
44
|
uneq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) = ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ) |
46 |
45
|
eleq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( ( ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ∈ 𝐴 ↔ ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ∈ 𝐴 ) ) |
47 |
46
|
ifbid |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → if ( ( ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝐶 ) } , ∅ ) = if ( ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝐶 ) } , ∅ ) ) |
48 |
44 47
|
uneq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) ∧ ¬ 𝐶 = ∪ 𝐶 ) → ( ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ 𝐶 ) ∪ if ( ( ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝐶 ) } , ∅ ) ) = ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ if ( ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝐶 ) } , ∅ ) ) ) |
49 |
48
|
ifeq2da |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → if ( 𝐶 = ∪ 𝐶 , if ( 𝐶 = ∅ , 𝐵 , ∪ ( 𝐺 “ 𝐶 ) ) , ( ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ 𝐶 ) ∪ if ( ( ( ( 𝐺 ↾ 𝐶 ) ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝐶 ) } , ∅ ) ) ) = if ( 𝐶 = ∪ 𝐶 , if ( 𝐶 = ∅ , 𝐵 , ∪ ( 𝐺 “ 𝐶 ) ) , ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ if ( ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝐶 ) } , ∅ ) ) ) ) |
50 |
33 49
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝐶 ∈ On ) ∧ 𝑧 = ( 𝐺 ↾ 𝐶 ) ) → if ( dom 𝑧 = ∪ dom 𝑧 , if ( dom 𝑧 = ∅ , 𝐵 , ∪ ran 𝑧 ) , ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝐹 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ dom 𝑧 ) } , ∅ ) ) ) = if ( 𝐶 = ∪ 𝐶 , if ( 𝐶 = ∅ , 𝐵 , ∪ ( 𝐺 “ 𝐶 ) ) , ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ if ( ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝐶 ) } , ∅ ) ) ) ) |
51 |
|
fnfun |
⊢ ( 𝐺 Fn On → Fun 𝐺 ) |
52 |
10 51
|
ax-mp |
⊢ Fun 𝐺 |
53 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ On ) → 𝐶 ∈ On ) |
54 |
|
resfunexg |
⊢ ( ( Fun 𝐺 ∧ 𝐶 ∈ On ) → ( 𝐺 ↾ 𝐶 ) ∈ V ) |
55 |
52 53 54
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ On ) → ( 𝐺 ↾ 𝐶 ) ∈ V ) |
56 |
2
|
elexd |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
57 |
|
funimaexg |
⊢ ( ( Fun 𝐺 ∧ 𝐶 ∈ On ) → ( 𝐺 “ 𝐶 ) ∈ V ) |
58 |
52 57
|
mpan |
⊢ ( 𝐶 ∈ On → ( 𝐺 “ 𝐶 ) ∈ V ) |
59 |
58
|
uniexd |
⊢ ( 𝐶 ∈ On → ∪ ( 𝐺 “ 𝐶 ) ∈ V ) |
60 |
|
ifcl |
⊢ ( ( 𝐵 ∈ V ∧ ∪ ( 𝐺 “ 𝐶 ) ∈ V ) → if ( 𝐶 = ∅ , 𝐵 , ∪ ( 𝐺 “ 𝐶 ) ) ∈ V ) |
61 |
56 59 60
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ On ) → if ( 𝐶 = ∅ , 𝐵 , ∪ ( 𝐺 “ 𝐶 ) ) ∈ V ) |
62 |
|
fvex |
⊢ ( 𝐺 ‘ ∪ 𝐶 ) ∈ V |
63 |
|
snex |
⊢ { ( 𝐹 ‘ ∪ 𝐶 ) } ∈ V |
64 |
|
0ex |
⊢ ∅ ∈ V |
65 |
63 64
|
ifex |
⊢ if ( ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝐶 ) } , ∅ ) ∈ V |
66 |
62 65
|
unex |
⊢ ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ if ( ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝐶 ) } , ∅ ) ) ∈ V |
67 |
|
ifcl |
⊢ ( ( if ( 𝐶 = ∅ , 𝐵 , ∪ ( 𝐺 “ 𝐶 ) ) ∈ V ∧ ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ if ( ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝐶 ) } , ∅ ) ) ∈ V ) → if ( 𝐶 = ∪ 𝐶 , if ( 𝐶 = ∅ , 𝐵 , ∪ ( 𝐺 “ 𝐶 ) ) , ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ if ( ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝐶 ) } , ∅ ) ) ) ∈ V ) |
68 |
61 66 67
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ On ) → if ( 𝐶 = ∪ 𝐶 , if ( 𝐶 = ∅ , 𝐵 , ∪ ( 𝐺 “ 𝐶 ) ) , ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ if ( ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝐶 ) } , ∅ ) ) ) ∈ V ) |
69 |
7 50 55 68
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ On ) → ( ( 𝑧 ∈ V ↦ if ( dom 𝑧 = ∪ dom 𝑧 , if ( dom 𝑧 = ∅ , 𝐵 , ∪ ran 𝑧 ) , ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝐹 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ dom 𝑧 ) } , ∅ ) ) ) ) ‘ ( 𝐺 ↾ 𝐶 ) ) = if ( 𝐶 = ∪ 𝐶 , if ( 𝐶 = ∅ , 𝐵 , ∪ ( 𝐺 “ 𝐶 ) ) , ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ if ( ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝐶 ) } , ∅ ) ) ) ) |
70 |
6 69
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ On ) → ( 𝐺 ‘ 𝐶 ) = if ( 𝐶 = ∪ 𝐶 , if ( 𝐶 = ∅ , 𝐵 , ∪ ( 𝐺 “ 𝐶 ) ) , ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ if ( ( ( 𝐺 ‘ ∪ 𝐶 ) ∪ { ( 𝐹 ‘ ∪ 𝐶 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ 𝐶 ) } , ∅ ) ) ) ) |