Step |
Hyp |
Ref |
Expression |
1 |
|
ttukeylem.1 |
⊢ ( 𝜑 → 𝐹 : ( card ‘ ( ∪ 𝐴 ∖ 𝐵 ) ) –1-1-onto→ ( ∪ 𝐴 ∖ 𝐵 ) ) |
2 |
|
ttukeylem.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) |
3 |
|
ttukeylem.3 |
⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) ) |
4 |
|
ttukeylem.4 |
⊢ 𝐺 = recs ( ( 𝑧 ∈ V ↦ if ( dom 𝑧 = ∪ dom 𝑧 , if ( dom 𝑧 = ∅ , 𝐵 , ∪ ran 𝑧 ) , ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ if ( ( ( 𝑧 ‘ ∪ dom 𝑧 ) ∪ { ( 𝐹 ‘ ∪ dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ dom 𝑧 ) } , ∅ ) ) ) ) ) |
5 |
|
0elon |
⊢ ∅ ∈ On |
6 |
1 2 3 4
|
ttukeylem3 |
⊢ ( ( 𝜑 ∧ ∅ ∈ On ) → ( 𝐺 ‘ ∅ ) = if ( ∅ = ∪ ∅ , if ( ∅ = ∅ , 𝐵 , ∪ ( 𝐺 “ ∅ ) ) , ( ( 𝐺 ‘ ∪ ∅ ) ∪ if ( ( ( 𝐺 ‘ ∪ ∅ ) ∪ { ( 𝐹 ‘ ∪ ∅ ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ ∅ ) } , ∅ ) ) ) ) |
7 |
5 6
|
mpan2 |
⊢ ( 𝜑 → ( 𝐺 ‘ ∅ ) = if ( ∅ = ∪ ∅ , if ( ∅ = ∅ , 𝐵 , ∪ ( 𝐺 “ ∅ ) ) , ( ( 𝐺 ‘ ∪ ∅ ) ∪ if ( ( ( 𝐺 ‘ ∪ ∅ ) ∪ { ( 𝐹 ‘ ∪ ∅ ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ ∅ ) } , ∅ ) ) ) ) |
8 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
9 |
8
|
eqcomi |
⊢ ∅ = ∪ ∅ |
10 |
9
|
iftruei |
⊢ if ( ∅ = ∪ ∅ , if ( ∅ = ∅ , 𝐵 , ∪ ( 𝐺 “ ∅ ) ) , ( ( 𝐺 ‘ ∪ ∅ ) ∪ if ( ( ( 𝐺 ‘ ∪ ∅ ) ∪ { ( 𝐹 ‘ ∪ ∅ ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ ∅ ) } , ∅ ) ) ) = if ( ∅ = ∅ , 𝐵 , ∪ ( 𝐺 “ ∅ ) ) |
11 |
|
eqid |
⊢ ∅ = ∅ |
12 |
11
|
iftruei |
⊢ if ( ∅ = ∅ , 𝐵 , ∪ ( 𝐺 “ ∅ ) ) = 𝐵 |
13 |
10 12
|
eqtri |
⊢ if ( ∅ = ∪ ∅ , if ( ∅ = ∅ , 𝐵 , ∪ ( 𝐺 “ ∅ ) ) , ( ( 𝐺 ‘ ∪ ∅ ) ∪ if ( ( ( 𝐺 ‘ ∪ ∅ ) ∪ { ( 𝐹 ‘ ∪ ∅ ) } ) ∈ 𝐴 , { ( 𝐹 ‘ ∪ ∅ ) } , ∅ ) ) ) = 𝐵 |
14 |
7 13
|
eqtrdi |
⊢ ( 𝜑 → ( 𝐺 ‘ ∅ ) = 𝐵 ) |