Metamath Proof Explorer


Theorem ttukeylem6

Description: Lemma for ttukey . (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Hypotheses ttukeylem.1 ( 𝜑𝐹 : ( card ‘ ( 𝐴𝐵 ) ) –1-1-onto→ ( 𝐴𝐵 ) )
ttukeylem.2 ( 𝜑𝐵𝐴 )
ttukeylem.3 ( 𝜑 → ∀ 𝑥 ( 𝑥𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) )
ttukeylem.4 𝐺 = recs ( ( 𝑧 ∈ V ↦ if ( dom 𝑧 = dom 𝑧 , if ( dom 𝑧 = ∅ , 𝐵 , ran 𝑧 ) , ( ( 𝑧 dom 𝑧 ) ∪ if ( ( ( 𝑧 dom 𝑧 ) ∪ { ( 𝐹 dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝐹 dom 𝑧 ) } , ∅ ) ) ) ) )
Assertion ttukeylem6 ( ( 𝜑𝐶 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ) → ( 𝐺𝐶 ) ∈ 𝐴 )

Proof

Step Hyp Ref Expression
1 ttukeylem.1 ( 𝜑𝐹 : ( card ‘ ( 𝐴𝐵 ) ) –1-1-onto→ ( 𝐴𝐵 ) )
2 ttukeylem.2 ( 𝜑𝐵𝐴 )
3 ttukeylem.3 ( 𝜑 → ∀ 𝑥 ( 𝑥𝐴 ↔ ( 𝒫 𝑥 ∩ Fin ) ⊆ 𝐴 ) )
4 ttukeylem.4 𝐺 = recs ( ( 𝑧 ∈ V ↦ if ( dom 𝑧 = dom 𝑧 , if ( dom 𝑧 = ∅ , 𝐵 , ran 𝑧 ) , ( ( 𝑧 dom 𝑧 ) ∪ if ( ( ( 𝑧 dom 𝑧 ) ∪ { ( 𝐹 dom 𝑧 ) } ) ∈ 𝐴 , { ( 𝐹 dom 𝑧 ) } , ∅ ) ) ) ) )
5 cardon ( card ‘ ( 𝐴𝐵 ) ) ∈ On
6 5 onsuci suc ( card ‘ ( 𝐴𝐵 ) ) ∈ On
7 6 a1i ( 𝜑 → suc ( card ‘ ( 𝐴𝐵 ) ) ∈ On )
8 onelon ( ( suc ( card ‘ ( 𝐴𝐵 ) ) ∈ On ∧ 𝐶 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ) → 𝐶 ∈ On )
9 7 8 sylan ( ( 𝜑𝐶 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ) → 𝐶 ∈ On )
10 eleq1 ( 𝑦 = 𝑎 → ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ↔ 𝑎 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ) )
11 fveq2 ( 𝑦 = 𝑎 → ( 𝐺𝑦 ) = ( 𝐺𝑎 ) )
12 11 eleq1d ( 𝑦 = 𝑎 → ( ( 𝐺𝑦 ) ∈ 𝐴 ↔ ( 𝐺𝑎 ) ∈ 𝐴 ) )
13 10 12 imbi12d ( 𝑦 = 𝑎 → ( ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) → ( 𝐺𝑦 ) ∈ 𝐴 ) ↔ ( 𝑎 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) → ( 𝐺𝑎 ) ∈ 𝐴 ) ) )
14 13 imbi2d ( 𝑦 = 𝑎 → ( ( 𝜑 → ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) → ( 𝐺𝑦 ) ∈ 𝐴 ) ) ↔ ( 𝜑 → ( 𝑎 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) → ( 𝐺𝑎 ) ∈ 𝐴 ) ) ) )
15 eleq1 ( 𝑦 = 𝐶 → ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ↔ 𝐶 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ) )
16 fveq2 ( 𝑦 = 𝐶 → ( 𝐺𝑦 ) = ( 𝐺𝐶 ) )
17 16 eleq1d ( 𝑦 = 𝐶 → ( ( 𝐺𝑦 ) ∈ 𝐴 ↔ ( 𝐺𝐶 ) ∈ 𝐴 ) )
18 15 17 imbi12d ( 𝑦 = 𝐶 → ( ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) → ( 𝐺𝑦 ) ∈ 𝐴 ) ↔ ( 𝐶 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) → ( 𝐺𝐶 ) ∈ 𝐴 ) ) )
19 18 imbi2d ( 𝑦 = 𝐶 → ( ( 𝜑 → ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) → ( 𝐺𝑦 ) ∈ 𝐴 ) ) ↔ ( 𝜑 → ( 𝐶 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) → ( 𝐺𝐶 ) ∈ 𝐴 ) ) ) )
20 r19.21v ( ∀ 𝑎𝑦 ( 𝜑 → ( 𝑎 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) → ( 𝐺𝑎 ) ∈ 𝐴 ) ) ↔ ( 𝜑 → ∀ 𝑎𝑦 ( 𝑎 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) → ( 𝐺𝑎 ) ∈ 𝐴 ) ) )
21 6 onordi Ord suc ( card ‘ ( 𝐴𝐵 ) )
22 21 a1i ( 𝜑 → Ord suc ( card ‘ ( 𝐴𝐵 ) ) )
23 ordelss ( ( Ord suc ( card ‘ ( 𝐴𝐵 ) ) ∧ 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ) → 𝑦 ⊆ suc ( card ‘ ( 𝐴𝐵 ) ) )
24 22 23 sylan ( ( 𝜑𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ) → 𝑦 ⊆ suc ( card ‘ ( 𝐴𝐵 ) ) )
25 24 sselda ( ( ( 𝜑𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ) ∧ 𝑎𝑦 ) → 𝑎 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) )
26 biimt ( 𝑎 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) → ( ( 𝐺𝑎 ) ∈ 𝐴 ↔ ( 𝑎 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) → ( 𝐺𝑎 ) ∈ 𝐴 ) ) )
27 25 26 syl ( ( ( 𝜑𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ) ∧ 𝑎𝑦 ) → ( ( 𝐺𝑎 ) ∈ 𝐴 ↔ ( 𝑎 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) → ( 𝐺𝑎 ) ∈ 𝐴 ) ) )
28 27 ralbidva ( ( 𝜑𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ) → ( ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ↔ ∀ 𝑎𝑦 ( 𝑎 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) → ( 𝐺𝑎 ) ∈ 𝐴 ) ) )
29 6 onssi suc ( card ‘ ( 𝐴𝐵 ) ) ⊆ On
30 simprl ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) → 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) )
31 29 30 sselid ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) → 𝑦 ∈ On )
32 1 2 3 4 ttukeylem3 ( ( 𝜑𝑦 ∈ On ) → ( 𝐺𝑦 ) = if ( 𝑦 = 𝑦 , if ( 𝑦 = ∅ , 𝐵 , ( 𝐺𝑦 ) ) , ( ( 𝐺 𝑦 ) ∪ if ( ( ( 𝐺 𝑦 ) ∪ { ( 𝐹 𝑦 ) } ) ∈ 𝐴 , { ( 𝐹 𝑦 ) } , ∅ ) ) ) )
33 31 32 syldan ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) → ( 𝐺𝑦 ) = if ( 𝑦 = 𝑦 , if ( 𝑦 = ∅ , 𝐵 , ( 𝐺𝑦 ) ) , ( ( 𝐺 𝑦 ) ∪ if ( ( ( 𝐺 𝑦 ) ∪ { ( 𝐹 𝑦 ) } ) ∈ 𝐴 , { ( 𝐹 𝑦 ) } , ∅ ) ) ) )
34 2 ad3antrrr ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ 𝑦 = ∅ ) → 𝐵𝐴 )
35 simpr ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ) → 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) )
36 35 elin2d ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ) → 𝑤 ∈ Fin )
37 35 elin1d ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ) → 𝑤 ∈ 𝒫 ( 𝐺𝑦 ) )
38 37 elpwid ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ) → 𝑤 ( 𝐺𝑦 ) )
39 4 tfr1 𝐺 Fn On
40 fnfun ( 𝐺 Fn On → Fun 𝐺 )
41 funiunfv ( Fun 𝐺 𝑣𝑦 ( 𝐺𝑣 ) = ( 𝐺𝑦 ) )
42 39 40 41 mp2b 𝑣𝑦 ( 𝐺𝑣 ) = ( 𝐺𝑦 )
43 38 42 sseqtrrdi ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ) → 𝑤 𝑣𝑦 ( 𝐺𝑣 ) )
44 dfss3 ( 𝑤 𝑣𝑦 ( 𝐺𝑣 ) ↔ ∀ 𝑢𝑤 𝑢 𝑣𝑦 ( 𝐺𝑣 ) )
45 eliun ( 𝑢 𝑣𝑦 ( 𝐺𝑣 ) ↔ ∃ 𝑣𝑦 𝑢 ∈ ( 𝐺𝑣 ) )
46 45 ralbii ( ∀ 𝑢𝑤 𝑢 𝑣𝑦 ( 𝐺𝑣 ) ↔ ∀ 𝑢𝑤𝑣𝑦 𝑢 ∈ ( 𝐺𝑣 ) )
47 44 46 bitri ( 𝑤 𝑣𝑦 ( 𝐺𝑣 ) ↔ ∀ 𝑢𝑤𝑣𝑦 𝑢 ∈ ( 𝐺𝑣 ) )
48 43 47 sylib ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ) → ∀ 𝑢𝑤𝑣𝑦 𝑢 ∈ ( 𝐺𝑣 ) )
49 fveq2 ( 𝑣 = ( 𝑓𝑢 ) → ( 𝐺𝑣 ) = ( 𝐺 ‘ ( 𝑓𝑢 ) ) )
50 49 eleq2d ( 𝑣 = ( 𝑓𝑢 ) → ( 𝑢 ∈ ( 𝐺𝑣 ) ↔ 𝑢 ∈ ( 𝐺 ‘ ( 𝑓𝑢 ) ) ) )
51 50 ac6sfi ( ( 𝑤 ∈ Fin ∧ ∀ 𝑢𝑤𝑣𝑦 𝑢 ∈ ( 𝐺𝑣 ) ) → ∃ 𝑓 ( 𝑓 : 𝑤𝑦 ∧ ∀ 𝑢𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓𝑢 ) ) ) )
52 36 48 51 syl2anc ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ) → ∃ 𝑓 ( 𝑓 : 𝑤𝑦 ∧ ∀ 𝑢𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓𝑢 ) ) ) )
53 eleq1 ( 𝑤 = ∅ → ( 𝑤𝐴 ↔ ∅ ∈ 𝐴 ) )
54 simp-4l ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤𝑦 ∧ ∀ 𝑢𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓𝑢 ) ) ) ) ) ∧ 𝑤 ≠ ∅ ) → 𝜑 )
55 fveq2 ( 𝑎 = ran 𝑓 → ( 𝐺𝑎 ) = ( 𝐺 ran 𝑓 ) )
56 55 eleq1d ( 𝑎 = ran 𝑓 → ( ( 𝐺𝑎 ) ∈ 𝐴 ↔ ( 𝐺 ran 𝑓 ) ∈ 𝐴 ) )
57 simplrr ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) → ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 )
58 57 ad2antrr ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤𝑦 ∧ ∀ 𝑢𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓𝑢 ) ) ) ) ) ∧ 𝑤 ≠ ∅ ) → ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 )
59 simprrl ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤𝑦 ∧ ∀ 𝑢𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓𝑢 ) ) ) ) ) → 𝑓 : 𝑤𝑦 )
60 59 adantr ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤𝑦 ∧ ∀ 𝑢𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓𝑢 ) ) ) ) ) ∧ 𝑤 ≠ ∅ ) → 𝑓 : 𝑤𝑦 )
61 frn ( 𝑓 : 𝑤𝑦 → ran 𝑓𝑦 )
62 60 61 syl ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤𝑦 ∧ ∀ 𝑢𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓𝑢 ) ) ) ) ) ∧ 𝑤 ≠ ∅ ) → ran 𝑓𝑦 )
63 31 ad3antrrr ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤𝑦 ∧ ∀ 𝑢𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓𝑢 ) ) ) ) ) ∧ 𝑤 ≠ ∅ ) → 𝑦 ∈ On )
64 onss ( 𝑦 ∈ On → 𝑦 ⊆ On )
65 63 64 syl ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤𝑦 ∧ ∀ 𝑢𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓𝑢 ) ) ) ) ) ∧ 𝑤 ≠ ∅ ) → 𝑦 ⊆ On )
66 62 65 sstrd ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤𝑦 ∧ ∀ 𝑢𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓𝑢 ) ) ) ) ) ∧ 𝑤 ≠ ∅ ) → ran 𝑓 ⊆ On )
67 36 adantrr ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤𝑦 ∧ ∀ 𝑢𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓𝑢 ) ) ) ) ) → 𝑤 ∈ Fin )
68 67 adantr ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤𝑦 ∧ ∀ 𝑢𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓𝑢 ) ) ) ) ) ∧ 𝑤 ≠ ∅ ) → 𝑤 ∈ Fin )
69 ffn ( 𝑓 : 𝑤𝑦𝑓 Fn 𝑤 )
70 60 69 syl ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤𝑦 ∧ ∀ 𝑢𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓𝑢 ) ) ) ) ) ∧ 𝑤 ≠ ∅ ) → 𝑓 Fn 𝑤 )
71 dffn4 ( 𝑓 Fn 𝑤𝑓 : 𝑤onto→ ran 𝑓 )
72 70 71 sylib ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤𝑦 ∧ ∀ 𝑢𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓𝑢 ) ) ) ) ) ∧ 𝑤 ≠ ∅ ) → 𝑓 : 𝑤onto→ ran 𝑓 )
73 fofi ( ( 𝑤 ∈ Fin ∧ 𝑓 : 𝑤onto→ ran 𝑓 ) → ran 𝑓 ∈ Fin )
74 68 72 73 syl2anc ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤𝑦 ∧ ∀ 𝑢𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓𝑢 ) ) ) ) ) ∧ 𝑤 ≠ ∅ ) → ran 𝑓 ∈ Fin )
75 dm0rn0 ( dom 𝑓 = ∅ ↔ ran 𝑓 = ∅ )
76 59 fdmd ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤𝑦 ∧ ∀ 𝑢𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓𝑢 ) ) ) ) ) → dom 𝑓 = 𝑤 )
77 76 eqeq1d ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤𝑦 ∧ ∀ 𝑢𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓𝑢 ) ) ) ) ) → ( dom 𝑓 = ∅ ↔ 𝑤 = ∅ ) )
78 75 77 bitr3id ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤𝑦 ∧ ∀ 𝑢𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓𝑢 ) ) ) ) ) → ( ran 𝑓 = ∅ ↔ 𝑤 = ∅ ) )
79 78 necon3bid ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤𝑦 ∧ ∀ 𝑢𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓𝑢 ) ) ) ) ) → ( ran 𝑓 ≠ ∅ ↔ 𝑤 ≠ ∅ ) )
80 79 biimpar ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤𝑦 ∧ ∀ 𝑢𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓𝑢 ) ) ) ) ) ∧ 𝑤 ≠ ∅ ) → ran 𝑓 ≠ ∅ )
81 ordunifi ( ( ran 𝑓 ⊆ On ∧ ran 𝑓 ∈ Fin ∧ ran 𝑓 ≠ ∅ ) → ran 𝑓 ∈ ran 𝑓 )
82 66 74 80 81 syl3anc ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤𝑦 ∧ ∀ 𝑢𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓𝑢 ) ) ) ) ) ∧ 𝑤 ≠ ∅ ) → ran 𝑓 ∈ ran 𝑓 )
83 62 82 sseldd ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤𝑦 ∧ ∀ 𝑢𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓𝑢 ) ) ) ) ) ∧ 𝑤 ≠ ∅ ) → ran 𝑓𝑦 )
84 56 58 83 rspcdva ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤𝑦 ∧ ∀ 𝑢𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓𝑢 ) ) ) ) ) ∧ 𝑤 ≠ ∅ ) → ( 𝐺 ran 𝑓 ) ∈ 𝐴 )
85 simp-4l ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ) ∧ ( 𝑓 : 𝑤𝑦𝑢𝑤 ) ) → 𝜑 )
86 31 ad3antrrr ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ) ∧ ( 𝑓 : 𝑤𝑦𝑢𝑤 ) ) → 𝑦 ∈ On )
87 86 64 syl ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ) ∧ ( 𝑓 : 𝑤𝑦𝑢𝑤 ) ) → 𝑦 ⊆ On )
88 ffvelrn ( ( 𝑓 : 𝑤𝑦𝑢𝑤 ) → ( 𝑓𝑢 ) ∈ 𝑦 )
89 88 adantl ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ) ∧ ( 𝑓 : 𝑤𝑦𝑢𝑤 ) ) → ( 𝑓𝑢 ) ∈ 𝑦 )
90 87 89 sseldd ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ) ∧ ( 𝑓 : 𝑤𝑦𝑢𝑤 ) ) → ( 𝑓𝑢 ) ∈ On )
91 61 ad2antrl ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ) ∧ ( 𝑓 : 𝑤𝑦𝑢𝑤 ) ) → ran 𝑓𝑦 )
92 91 87 sstrd ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ) ∧ ( 𝑓 : 𝑤𝑦𝑢𝑤 ) ) → ran 𝑓 ⊆ On )
93 vex 𝑓 ∈ V
94 93 rnex ran 𝑓 ∈ V
95 94 ssonunii ( ran 𝑓 ⊆ On → ran 𝑓 ∈ On )
96 92 95 syl ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ) ∧ ( 𝑓 : 𝑤𝑦𝑢𝑤 ) ) → ran 𝑓 ∈ On )
97 69 ad2antrl ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ) ∧ ( 𝑓 : 𝑤𝑦𝑢𝑤 ) ) → 𝑓 Fn 𝑤 )
98 simprr ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ) ∧ ( 𝑓 : 𝑤𝑦𝑢𝑤 ) ) → 𝑢𝑤 )
99 fnfvelrn ( ( 𝑓 Fn 𝑤𝑢𝑤 ) → ( 𝑓𝑢 ) ∈ ran 𝑓 )
100 97 98 99 syl2anc ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ) ∧ ( 𝑓 : 𝑤𝑦𝑢𝑤 ) ) → ( 𝑓𝑢 ) ∈ ran 𝑓 )
101 elssuni ( ( 𝑓𝑢 ) ∈ ran 𝑓 → ( 𝑓𝑢 ) ⊆ ran 𝑓 )
102 100 101 syl ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ) ∧ ( 𝑓 : 𝑤𝑦𝑢𝑤 ) ) → ( 𝑓𝑢 ) ⊆ ran 𝑓 )
103 1 2 3 4 ttukeylem5 ( ( 𝜑 ∧ ( ( 𝑓𝑢 ) ∈ On ∧ ran 𝑓 ∈ On ∧ ( 𝑓𝑢 ) ⊆ ran 𝑓 ) ) → ( 𝐺 ‘ ( 𝑓𝑢 ) ) ⊆ ( 𝐺 ran 𝑓 ) )
104 85 90 96 102 103 syl13anc ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ) ∧ ( 𝑓 : 𝑤𝑦𝑢𝑤 ) ) → ( 𝐺 ‘ ( 𝑓𝑢 ) ) ⊆ ( 𝐺 ran 𝑓 ) )
105 104 sseld ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ) ∧ ( 𝑓 : 𝑤𝑦𝑢𝑤 ) ) → ( 𝑢 ∈ ( 𝐺 ‘ ( 𝑓𝑢 ) ) → 𝑢 ∈ ( 𝐺 ran 𝑓 ) ) )
106 105 anassrs ( ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ) ∧ 𝑓 : 𝑤𝑦 ) ∧ 𝑢𝑤 ) → ( 𝑢 ∈ ( 𝐺 ‘ ( 𝑓𝑢 ) ) → 𝑢 ∈ ( 𝐺 ran 𝑓 ) ) )
107 106 ralimdva ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ) ∧ 𝑓 : 𝑤𝑦 ) → ( ∀ 𝑢𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓𝑢 ) ) → ∀ 𝑢𝑤 𝑢 ∈ ( 𝐺 ran 𝑓 ) ) )
108 107 expimpd ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ) → ( ( 𝑓 : 𝑤𝑦 ∧ ∀ 𝑢𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓𝑢 ) ) ) → ∀ 𝑢𝑤 𝑢 ∈ ( 𝐺 ran 𝑓 ) ) )
109 108 impr ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤𝑦 ∧ ∀ 𝑢𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓𝑢 ) ) ) ) ) → ∀ 𝑢𝑤 𝑢 ∈ ( 𝐺 ran 𝑓 ) )
110 109 adantr ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤𝑦 ∧ ∀ 𝑢𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓𝑢 ) ) ) ) ) ∧ 𝑤 ≠ ∅ ) → ∀ 𝑢𝑤 𝑢 ∈ ( 𝐺 ran 𝑓 ) )
111 dfss3 ( 𝑤 ⊆ ( 𝐺 ran 𝑓 ) ↔ ∀ 𝑢𝑤 𝑢 ∈ ( 𝐺 ran 𝑓 ) )
112 110 111 sylibr ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤𝑦 ∧ ∀ 𝑢𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓𝑢 ) ) ) ) ) ∧ 𝑤 ≠ ∅ ) → 𝑤 ⊆ ( 𝐺 ran 𝑓 ) )
113 1 2 3 ttukeylem2 ( ( 𝜑 ∧ ( ( 𝐺 ran 𝑓 ) ∈ 𝐴𝑤 ⊆ ( 𝐺 ran 𝑓 ) ) ) → 𝑤𝐴 )
114 54 84 112 113 syl12anc ( ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤𝑦 ∧ ∀ 𝑢𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓𝑢 ) ) ) ) ) ∧ 𝑤 ≠ ∅ ) → 𝑤𝐴 )
115 0ss ∅ ⊆ 𝐵
116 1 2 3 ttukeylem2 ( ( 𝜑 ∧ ( 𝐵𝐴 ∧ ∅ ⊆ 𝐵 ) ) → ∅ ∈ 𝐴 )
117 115 116 mpanr2 ( ( 𝜑𝐵𝐴 ) → ∅ ∈ 𝐴 )
118 2 117 mpdan ( 𝜑 → ∅ ∈ 𝐴 )
119 118 ad3antrrr ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤𝑦 ∧ ∀ 𝑢𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓𝑢 ) ) ) ) ) → ∅ ∈ 𝐴 )
120 53 114 119 pm2.61ne ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ ( 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ∧ ( 𝑓 : 𝑤𝑦 ∧ ∀ 𝑢𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓𝑢 ) ) ) ) ) → 𝑤𝐴 )
121 120 expr ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ) → ( ( 𝑓 : 𝑤𝑦 ∧ ∀ 𝑢𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓𝑢 ) ) ) → 𝑤𝐴 ) )
122 121 exlimdv ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ) → ( ∃ 𝑓 ( 𝑓 : 𝑤𝑦 ∧ ∀ 𝑢𝑤 𝑢 ∈ ( 𝐺 ‘ ( 𝑓𝑢 ) ) ) → 𝑤𝐴 ) )
123 52 122 mpd ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ) → 𝑤𝐴 )
124 123 ex ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) → ( 𝑤 ∈ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) → 𝑤𝐴 ) )
125 124 ssrdv ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) → ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ⊆ 𝐴 )
126 1 2 3 ttukeylem1 ( 𝜑 → ( ( 𝐺𝑦 ) ∈ 𝐴 ↔ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ⊆ 𝐴 ) )
127 126 ad2antrr ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) → ( ( 𝐺𝑦 ) ∈ 𝐴 ↔ ( 𝒫 ( 𝐺𝑦 ) ∩ Fin ) ⊆ 𝐴 ) )
128 125 127 mpbird ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) → ( 𝐺𝑦 ) ∈ 𝐴 )
129 128 adantr ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) ∧ ¬ 𝑦 = ∅ ) → ( 𝐺𝑦 ) ∈ 𝐴 )
130 34 129 ifclda ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ 𝑦 = 𝑦 ) → if ( 𝑦 = ∅ , 𝐵 , ( 𝐺𝑦 ) ) ∈ 𝐴 )
131 uneq2 ( { ( 𝐹 𝑦 ) } = if ( ( ( 𝐺 𝑦 ) ∪ { ( 𝐹 𝑦 ) } ) ∈ 𝐴 , { ( 𝐹 𝑦 ) } , ∅ ) → ( ( 𝐺 𝑦 ) ∪ { ( 𝐹 𝑦 ) } ) = ( ( 𝐺 𝑦 ) ∪ if ( ( ( 𝐺 𝑦 ) ∪ { ( 𝐹 𝑦 ) } ) ∈ 𝐴 , { ( 𝐹 𝑦 ) } , ∅ ) ) )
132 131 eleq1d ( { ( 𝐹 𝑦 ) } = if ( ( ( 𝐺 𝑦 ) ∪ { ( 𝐹 𝑦 ) } ) ∈ 𝐴 , { ( 𝐹 𝑦 ) } , ∅ ) → ( ( ( 𝐺 𝑦 ) ∪ { ( 𝐹 𝑦 ) } ) ∈ 𝐴 ↔ ( ( 𝐺 𝑦 ) ∪ if ( ( ( 𝐺 𝑦 ) ∪ { ( 𝐹 𝑦 ) } ) ∈ 𝐴 , { ( 𝐹 𝑦 ) } , ∅ ) ) ∈ 𝐴 ) )
133 un0 ( ( 𝐺 𝑦 ) ∪ ∅ ) = ( 𝐺 𝑦 )
134 uneq2 ( ∅ = if ( ( ( 𝐺 𝑦 ) ∪ { ( 𝐹 𝑦 ) } ) ∈ 𝐴 , { ( 𝐹 𝑦 ) } , ∅ ) → ( ( 𝐺 𝑦 ) ∪ ∅ ) = ( ( 𝐺 𝑦 ) ∪ if ( ( ( 𝐺 𝑦 ) ∪ { ( 𝐹 𝑦 ) } ) ∈ 𝐴 , { ( 𝐹 𝑦 ) } , ∅ ) ) )
135 133 134 eqtr3id ( ∅ = if ( ( ( 𝐺 𝑦 ) ∪ { ( 𝐹 𝑦 ) } ) ∈ 𝐴 , { ( 𝐹 𝑦 ) } , ∅ ) → ( 𝐺 𝑦 ) = ( ( 𝐺 𝑦 ) ∪ if ( ( ( 𝐺 𝑦 ) ∪ { ( 𝐹 𝑦 ) } ) ∈ 𝐴 , { ( 𝐹 𝑦 ) } , ∅ ) ) )
136 135 eleq1d ( ∅ = if ( ( ( 𝐺 𝑦 ) ∪ { ( 𝐹 𝑦 ) } ) ∈ 𝐴 , { ( 𝐹 𝑦 ) } , ∅ ) → ( ( 𝐺 𝑦 ) ∈ 𝐴 ↔ ( ( 𝐺 𝑦 ) ∪ if ( ( ( 𝐺 𝑦 ) ∪ { ( 𝐹 𝑦 ) } ) ∈ 𝐴 , { ( 𝐹 𝑦 ) } , ∅ ) ) ∈ 𝐴 ) )
137 simpr ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ ¬ 𝑦 = 𝑦 ) ∧ ( ( 𝐺 𝑦 ) ∪ { ( 𝐹 𝑦 ) } ) ∈ 𝐴 ) → ( ( 𝐺 𝑦 ) ∪ { ( 𝐹 𝑦 ) } ) ∈ 𝐴 )
138 fveq2 ( 𝑎 = 𝑦 → ( 𝐺𝑎 ) = ( 𝐺 𝑦 ) )
139 138 eleq1d ( 𝑎 = 𝑦 → ( ( 𝐺𝑎 ) ∈ 𝐴 ↔ ( 𝐺 𝑦 ) ∈ 𝐴 ) )
140 simplrr ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ ¬ 𝑦 = 𝑦 ) → ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 )
141 vuniex 𝑦 ∈ V
142 141 sucid 𝑦 ∈ suc 𝑦
143 eloni ( 𝑦 ∈ On → Ord 𝑦 )
144 orduniorsuc ( Ord 𝑦 → ( 𝑦 = 𝑦𝑦 = suc 𝑦 ) )
145 31 143 144 3syl ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) → ( 𝑦 = 𝑦𝑦 = suc 𝑦 ) )
146 145 orcanai ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ ¬ 𝑦 = 𝑦 ) → 𝑦 = suc 𝑦 )
147 142 146 eleqtrrid ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ ¬ 𝑦 = 𝑦 ) → 𝑦𝑦 )
148 139 140 147 rspcdva ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ ¬ 𝑦 = 𝑦 ) → ( 𝐺 𝑦 ) ∈ 𝐴 )
149 148 adantr ( ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ ¬ 𝑦 = 𝑦 ) ∧ ¬ ( ( 𝐺 𝑦 ) ∪ { ( 𝐹 𝑦 ) } ) ∈ 𝐴 ) → ( 𝐺 𝑦 ) ∈ 𝐴 )
150 132 136 137 149 ifbothda ( ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) ∧ ¬ 𝑦 = 𝑦 ) → ( ( 𝐺 𝑦 ) ∪ if ( ( ( 𝐺 𝑦 ) ∪ { ( 𝐹 𝑦 ) } ) ∈ 𝐴 , { ( 𝐹 𝑦 ) } , ∅ ) ) ∈ 𝐴 )
151 130 150 ifclda ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) → if ( 𝑦 = 𝑦 , if ( 𝑦 = ∅ , 𝐵 , ( 𝐺𝑦 ) ) , ( ( 𝐺 𝑦 ) ∪ if ( ( ( 𝐺 𝑦 ) ∪ { ( 𝐹 𝑦 ) } ) ∈ 𝐴 , { ( 𝐹 𝑦 ) } , ∅ ) ) ) ∈ 𝐴 )
152 33 151 eqeltrd ( ( 𝜑 ∧ ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ∧ ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 ) ) → ( 𝐺𝑦 ) ∈ 𝐴 )
153 152 expr ( ( 𝜑𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ) → ( ∀ 𝑎𝑦 ( 𝐺𝑎 ) ∈ 𝐴 → ( 𝐺𝑦 ) ∈ 𝐴 ) )
154 28 153 sylbird ( ( 𝜑𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ) → ( ∀ 𝑎𝑦 ( 𝑎 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) → ( 𝐺𝑎 ) ∈ 𝐴 ) → ( 𝐺𝑦 ) ∈ 𝐴 ) )
155 154 ex ( 𝜑 → ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) → ( ∀ 𝑎𝑦 ( 𝑎 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) → ( 𝐺𝑎 ) ∈ 𝐴 ) → ( 𝐺𝑦 ) ∈ 𝐴 ) ) )
156 155 com23 ( 𝜑 → ( ∀ 𝑎𝑦 ( 𝑎 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) → ( 𝐺𝑎 ) ∈ 𝐴 ) → ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) → ( 𝐺𝑦 ) ∈ 𝐴 ) ) )
157 156 a2i ( ( 𝜑 → ∀ 𝑎𝑦 ( 𝑎 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) → ( 𝐺𝑎 ) ∈ 𝐴 ) ) → ( 𝜑 → ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) → ( 𝐺𝑦 ) ∈ 𝐴 ) ) )
158 20 157 sylbi ( ∀ 𝑎𝑦 ( 𝜑 → ( 𝑎 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) → ( 𝐺𝑎 ) ∈ 𝐴 ) ) → ( 𝜑 → ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) → ( 𝐺𝑦 ) ∈ 𝐴 ) ) )
159 158 a1i ( 𝑦 ∈ On → ( ∀ 𝑎𝑦 ( 𝜑 → ( 𝑎 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) → ( 𝐺𝑎 ) ∈ 𝐴 ) ) → ( 𝜑 → ( 𝑦 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) → ( 𝐺𝑦 ) ∈ 𝐴 ) ) ) )
160 14 19 159 tfis3 ( 𝐶 ∈ On → ( 𝜑 → ( 𝐶 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) → ( 𝐺𝐶 ) ∈ 𝐴 ) ) )
161 160 impd ( 𝐶 ∈ On → ( ( 𝜑𝐶 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ) → ( 𝐺𝐶 ) ∈ 𝐴 ) )
162 9 161 mpcom ( ( 𝜑𝐶 ∈ suc ( card ‘ ( 𝐴𝐵 ) ) ) → ( 𝐺𝐶 ) ∈ 𝐴 )