Metamath Proof Explorer


Theorem tusbas

Description: The base set of a constructed uniform space. (Contributed by Thierry Arnoux, 5-Dec-2017)

Ref Expression
Hypothesis tuslem.k 𝐾 = ( toUnifSp ‘ 𝑈 )
Assertion tusbas ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 = ( Base ‘ 𝐾 ) )

Proof

Step Hyp Ref Expression
1 tuslem.k 𝐾 = ( toUnifSp ‘ 𝑈 )
2 1 tuslem ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑋 = ( Base ‘ 𝐾 ) ∧ 𝑈 = ( UnifSet ‘ 𝐾 ) ∧ ( unifTop ‘ 𝑈 ) = ( TopOpen ‘ 𝐾 ) ) )
3 2 simp1d ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 = ( Base ‘ 𝐾 ) )