Description: The topology induced by a constructed uniform space. (Contributed by Thierry Arnoux, 5-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tuslem.k | ⊢ 𝐾 = ( toUnifSp ‘ 𝑈 ) | |
tustopn.j | ⊢ 𝐽 = ( unifTop ‘ 𝑈 ) | ||
Assertion | tustopn | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝐽 = ( TopOpen ‘ 𝐾 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tuslem.k | ⊢ 𝐾 = ( toUnifSp ‘ 𝑈 ) | |
2 | tustopn.j | ⊢ 𝐽 = ( unifTop ‘ 𝑈 ) | |
3 | 1 | tuslem | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑋 = ( Base ‘ 𝐾 ) ∧ 𝑈 = ( UnifSet ‘ 𝐾 ) ∧ ( unifTop ‘ 𝑈 ) = ( TopOpen ‘ 𝐾 ) ) ) |
4 | 3 | simp3d | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) = ( TopOpen ‘ 𝐾 ) ) |
5 | 2 4 | eqtrid | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝐽 = ( TopOpen ‘ 𝐾 ) ) |