Step |
Hyp |
Ref |
Expression |
1 |
|
tuslem.k |
⊢ 𝐾 = ( toUnifSp ‘ 𝑈 ) |
2 |
|
utoptopon |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) ∈ ( TopOn ‘ 𝑋 ) ) |
3 |
|
eqid |
⊢ ( unifTop ‘ 𝑈 ) = ( unifTop ‘ 𝑈 ) |
4 |
1 3
|
tustopn |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) = ( TopOpen ‘ 𝐾 ) ) |
5 |
1
|
tusbas |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 = ( Base ‘ 𝐾 ) ) |
6 |
5
|
fveq2d |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( TopOn ‘ 𝑋 ) = ( TopOn ‘ ( Base ‘ 𝐾 ) ) ) |
7 |
2 4 6
|
3eltr3d |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( TopOpen ‘ 𝐾 ) ∈ ( TopOn ‘ ( Base ‘ 𝐾 ) ) ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
9 |
|
eqid |
⊢ ( TopOpen ‘ 𝐾 ) = ( TopOpen ‘ 𝐾 ) |
10 |
8 9
|
istps |
⊢ ( 𝐾 ∈ TopSp ↔ ( TopOpen ‘ 𝐾 ) ∈ ( TopOn ‘ ( Base ‘ 𝐾 ) ) ) |
11 |
7 10
|
sylibr |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝐾 ∈ TopSp ) |