Metamath Proof Explorer


Theorem tvclvec

Description: A topological vector space is a vector space. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Assertion tvclvec ( 𝑊 ∈ TopVec → 𝑊 ∈ LVec )

Proof

Step Hyp Ref Expression
1 tvclmod ( 𝑊 ∈ TopVec → 𝑊 ∈ LMod )
2 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
3 2 tvctdrg ( 𝑊 ∈ TopVec → ( Scalar ‘ 𝑊 ) ∈ TopDRing )
4 tdrgdrng ( ( Scalar ‘ 𝑊 ) ∈ TopDRing → ( Scalar ‘ 𝑊 ) ∈ DivRing )
5 3 4 syl ( 𝑊 ∈ TopVec → ( Scalar ‘ 𝑊 ) ∈ DivRing )
6 2 islvec ( 𝑊 ∈ LVec ↔ ( 𝑊 ∈ LMod ∧ ( Scalar ‘ 𝑊 ) ∈ DivRing ) )
7 1 5 6 sylanbrc ( 𝑊 ∈ TopVec → 𝑊 ∈ LVec )