Metamath Proof Explorer


Theorem tx1cn

Description: Continuity of the first projection map of a topological product. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 22-Aug-2015)

Ref Expression
Assertion tx1cn ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ( 1st ↾ ( 𝑋 × 𝑌 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑅 ) )

Proof

Step Hyp Ref Expression
1 f1stres ( 1st ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) ⟶ 𝑋
2 1 a1i ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ( 1st ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) ⟶ 𝑋 )
3 ffn ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) ⟶ 𝑋 → ( 1st ↾ ( 𝑋 × 𝑌 ) ) Fn ( 𝑋 × 𝑌 ) )
4 elpreima ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) Fn ( 𝑋 × 𝑌 ) → ( 𝑧 ∈ ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) “ 𝑤 ) ↔ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ∧ ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑧 ) ∈ 𝑤 ) ) )
5 1 3 4 mp2b ( 𝑧 ∈ ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) “ 𝑤 ) ↔ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ∧ ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑧 ) ∈ 𝑤 ) )
6 fvres ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑧 ) = ( 1st𝑧 ) )
7 6 eleq1d ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ( ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑧 ) ∈ 𝑤 ↔ ( 1st𝑧 ) ∈ 𝑤 ) )
8 1st2nd2 ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → 𝑧 = ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ )
9 xp2nd ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ( 2nd𝑧 ) ∈ 𝑌 )
10 elxp6 ( 𝑧 ∈ ( 𝑤 × 𝑌 ) ↔ ( 𝑧 = ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ∧ ( ( 1st𝑧 ) ∈ 𝑤 ∧ ( 2nd𝑧 ) ∈ 𝑌 ) ) )
11 anass ( ( ( 𝑧 = ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ∧ ( 1st𝑧 ) ∈ 𝑤 ) ∧ ( 2nd𝑧 ) ∈ 𝑌 ) ↔ ( 𝑧 = ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ∧ ( ( 1st𝑧 ) ∈ 𝑤 ∧ ( 2nd𝑧 ) ∈ 𝑌 ) ) )
12 an32 ( ( ( 𝑧 = ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ∧ ( 1st𝑧 ) ∈ 𝑤 ) ∧ ( 2nd𝑧 ) ∈ 𝑌 ) ↔ ( ( 𝑧 = ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ∧ ( 2nd𝑧 ) ∈ 𝑌 ) ∧ ( 1st𝑧 ) ∈ 𝑤 ) )
13 10 11 12 3bitr2i ( 𝑧 ∈ ( 𝑤 × 𝑌 ) ↔ ( ( 𝑧 = ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ∧ ( 2nd𝑧 ) ∈ 𝑌 ) ∧ ( 1st𝑧 ) ∈ 𝑤 ) )
14 13 baib ( ( 𝑧 = ⟨ ( 1st𝑧 ) , ( 2nd𝑧 ) ⟩ ∧ ( 2nd𝑧 ) ∈ 𝑌 ) → ( 𝑧 ∈ ( 𝑤 × 𝑌 ) ↔ ( 1st𝑧 ) ∈ 𝑤 ) )
15 8 9 14 syl2anc ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ( 𝑧 ∈ ( 𝑤 × 𝑌 ) ↔ ( 1st𝑧 ) ∈ 𝑤 ) )
16 7 15 bitr4d ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ( ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑧 ) ∈ 𝑤𝑧 ∈ ( 𝑤 × 𝑌 ) ) )
17 16 pm5.32i ( ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ∧ ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑧 ) ∈ 𝑤 ) ↔ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑧 ∈ ( 𝑤 × 𝑌 ) ) )
18 5 17 bitri ( 𝑧 ∈ ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) “ 𝑤 ) ↔ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑧 ∈ ( 𝑤 × 𝑌 ) ) )
19 toponss ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑤𝑅 ) → 𝑤𝑋 )
20 19 adantlr ( ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑤𝑅 ) → 𝑤𝑋 )
21 xpss1 ( 𝑤𝑋 → ( 𝑤 × 𝑌 ) ⊆ ( 𝑋 × 𝑌 ) )
22 20 21 syl ( ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑤𝑅 ) → ( 𝑤 × 𝑌 ) ⊆ ( 𝑋 × 𝑌 ) )
23 22 sseld ( ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑤𝑅 ) → ( 𝑧 ∈ ( 𝑤 × 𝑌 ) → 𝑧 ∈ ( 𝑋 × 𝑌 ) ) )
24 23 pm4.71rd ( ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑤𝑅 ) → ( 𝑧 ∈ ( 𝑤 × 𝑌 ) ↔ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑧 ∈ ( 𝑤 × 𝑌 ) ) ) )
25 18 24 bitr4id ( ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑤𝑅 ) → ( 𝑧 ∈ ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) “ 𝑤 ) ↔ 𝑧 ∈ ( 𝑤 × 𝑌 ) ) )
26 25 eqrdv ( ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑤𝑅 ) → ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) “ 𝑤 ) = ( 𝑤 × 𝑌 ) )
27 toponmax ( 𝑆 ∈ ( TopOn ‘ 𝑌 ) → 𝑌𝑆 )
28 27 ad2antlr ( ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑤𝑅 ) → 𝑌𝑆 )
29 txopn ( ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑤𝑅𝑌𝑆 ) ) → ( 𝑤 × 𝑌 ) ∈ ( 𝑅 ×t 𝑆 ) )
30 29 anassrs ( ( ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑤𝑅 ) ∧ 𝑌𝑆 ) → ( 𝑤 × 𝑌 ) ∈ ( 𝑅 ×t 𝑆 ) )
31 28 30 mpdan ( ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑤𝑅 ) → ( 𝑤 × 𝑌 ) ∈ ( 𝑅 ×t 𝑆 ) )
32 26 31 eqeltrd ( ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑤𝑅 ) → ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) “ 𝑤 ) ∈ ( 𝑅 ×t 𝑆 ) )
33 32 ralrimiva ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ∀ 𝑤𝑅 ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) “ 𝑤 ) ∈ ( 𝑅 ×t 𝑆 ) )
34 txtopon ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝑅 ×t 𝑆 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) )
35 simpl ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → 𝑅 ∈ ( TopOn ‘ 𝑋 ) )
36 iscn ( ( ( 𝑅 ×t 𝑆 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) → ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑅 ) ↔ ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) ⟶ 𝑋 ∧ ∀ 𝑤𝑅 ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) “ 𝑤 ) ∈ ( 𝑅 ×t 𝑆 ) ) ) )
37 34 35 36 syl2anc ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑅 ) ↔ ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) ⟶ 𝑋 ∧ ∀ 𝑤𝑅 ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) “ 𝑤 ) ∈ ( 𝑅 ×t 𝑆 ) ) ) )
38 2 33 37 mpbir2and ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ( 1st ↾ ( 𝑋 × 𝑌 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑅 ) )