Step |
Hyp |
Ref |
Expression |
1 |
|
f1stres |
⊢ ( 1st ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) ⟶ 𝑋 |
2 |
1
|
a1i |
⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ( 1st ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) ⟶ 𝑋 ) |
3 |
|
ffn |
⊢ ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) ⟶ 𝑋 → ( 1st ↾ ( 𝑋 × 𝑌 ) ) Fn ( 𝑋 × 𝑌 ) ) |
4 |
|
elpreima |
⊢ ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) Fn ( 𝑋 × 𝑌 ) → ( 𝑧 ∈ ( ◡ ( 1st ↾ ( 𝑋 × 𝑌 ) ) “ 𝑤 ) ↔ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ∧ ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑧 ) ∈ 𝑤 ) ) ) |
5 |
1 3 4
|
mp2b |
⊢ ( 𝑧 ∈ ( ◡ ( 1st ↾ ( 𝑋 × 𝑌 ) ) “ 𝑤 ) ↔ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ∧ ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑧 ) ∈ 𝑤 ) ) |
6 |
|
fvres |
⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑧 ) = ( 1st ‘ 𝑧 ) ) |
7 |
6
|
eleq1d |
⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ( ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑧 ) ∈ 𝑤 ↔ ( 1st ‘ 𝑧 ) ∈ 𝑤 ) ) |
8 |
|
1st2nd2 |
⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) |
9 |
|
xp2nd |
⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ( 2nd ‘ 𝑧 ) ∈ 𝑌 ) |
10 |
|
elxp6 |
⊢ ( 𝑧 ∈ ( 𝑤 × 𝑌 ) ↔ ( 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ∧ ( ( 1st ‘ 𝑧 ) ∈ 𝑤 ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑌 ) ) ) |
11 |
|
anass |
⊢ ( ( ( 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ∧ ( 1st ‘ 𝑧 ) ∈ 𝑤 ) ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑌 ) ↔ ( 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ∧ ( ( 1st ‘ 𝑧 ) ∈ 𝑤 ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑌 ) ) ) |
12 |
|
an32 |
⊢ ( ( ( 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ∧ ( 1st ‘ 𝑧 ) ∈ 𝑤 ) ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑌 ) ↔ ( ( 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑌 ) ∧ ( 1st ‘ 𝑧 ) ∈ 𝑤 ) ) |
13 |
10 11 12
|
3bitr2i |
⊢ ( 𝑧 ∈ ( 𝑤 × 𝑌 ) ↔ ( ( 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑌 ) ∧ ( 1st ‘ 𝑧 ) ∈ 𝑤 ) ) |
14 |
13
|
baib |
⊢ ( ( 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑌 ) → ( 𝑧 ∈ ( 𝑤 × 𝑌 ) ↔ ( 1st ‘ 𝑧 ) ∈ 𝑤 ) ) |
15 |
8 9 14
|
syl2anc |
⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ( 𝑧 ∈ ( 𝑤 × 𝑌 ) ↔ ( 1st ‘ 𝑧 ) ∈ 𝑤 ) ) |
16 |
7 15
|
bitr4d |
⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ( ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑧 ) ∈ 𝑤 ↔ 𝑧 ∈ ( 𝑤 × 𝑌 ) ) ) |
17 |
16
|
pm5.32i |
⊢ ( ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ∧ ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑧 ) ∈ 𝑤 ) ↔ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑧 ∈ ( 𝑤 × 𝑌 ) ) ) |
18 |
5 17
|
bitri |
⊢ ( 𝑧 ∈ ( ◡ ( 1st ↾ ( 𝑋 × 𝑌 ) ) “ 𝑤 ) ↔ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑧 ∈ ( 𝑤 × 𝑌 ) ) ) |
19 |
|
toponss |
⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑤 ∈ 𝑅 ) → 𝑤 ⊆ 𝑋 ) |
20 |
19
|
adantlr |
⊢ ( ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑤 ∈ 𝑅 ) → 𝑤 ⊆ 𝑋 ) |
21 |
|
xpss1 |
⊢ ( 𝑤 ⊆ 𝑋 → ( 𝑤 × 𝑌 ) ⊆ ( 𝑋 × 𝑌 ) ) |
22 |
20 21
|
syl |
⊢ ( ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑤 ∈ 𝑅 ) → ( 𝑤 × 𝑌 ) ⊆ ( 𝑋 × 𝑌 ) ) |
23 |
22
|
sseld |
⊢ ( ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑤 ∈ 𝑅 ) → ( 𝑧 ∈ ( 𝑤 × 𝑌 ) → 𝑧 ∈ ( 𝑋 × 𝑌 ) ) ) |
24 |
23
|
pm4.71rd |
⊢ ( ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑤 ∈ 𝑅 ) → ( 𝑧 ∈ ( 𝑤 × 𝑌 ) ↔ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑧 ∈ ( 𝑤 × 𝑌 ) ) ) ) |
25 |
18 24
|
bitr4id |
⊢ ( ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑤 ∈ 𝑅 ) → ( 𝑧 ∈ ( ◡ ( 1st ↾ ( 𝑋 × 𝑌 ) ) “ 𝑤 ) ↔ 𝑧 ∈ ( 𝑤 × 𝑌 ) ) ) |
26 |
25
|
eqrdv |
⊢ ( ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑤 ∈ 𝑅 ) → ( ◡ ( 1st ↾ ( 𝑋 × 𝑌 ) ) “ 𝑤 ) = ( 𝑤 × 𝑌 ) ) |
27 |
|
toponmax |
⊢ ( 𝑆 ∈ ( TopOn ‘ 𝑌 ) → 𝑌 ∈ 𝑆 ) |
28 |
27
|
ad2antlr |
⊢ ( ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑤 ∈ 𝑅 ) → 𝑌 ∈ 𝑆 ) |
29 |
|
txopn |
⊢ ( ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑤 ∈ 𝑅 ∧ 𝑌 ∈ 𝑆 ) ) → ( 𝑤 × 𝑌 ) ∈ ( 𝑅 ×t 𝑆 ) ) |
30 |
29
|
anassrs |
⊢ ( ( ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑤 ∈ 𝑅 ) ∧ 𝑌 ∈ 𝑆 ) → ( 𝑤 × 𝑌 ) ∈ ( 𝑅 ×t 𝑆 ) ) |
31 |
28 30
|
mpdan |
⊢ ( ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑤 ∈ 𝑅 ) → ( 𝑤 × 𝑌 ) ∈ ( 𝑅 ×t 𝑆 ) ) |
32 |
26 31
|
eqeltrd |
⊢ ( ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑤 ∈ 𝑅 ) → ( ◡ ( 1st ↾ ( 𝑋 × 𝑌 ) ) “ 𝑤 ) ∈ ( 𝑅 ×t 𝑆 ) ) |
33 |
32
|
ralrimiva |
⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ∀ 𝑤 ∈ 𝑅 ( ◡ ( 1st ↾ ( 𝑋 × 𝑌 ) ) “ 𝑤 ) ∈ ( 𝑅 ×t 𝑆 ) ) |
34 |
|
txtopon |
⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝑅 ×t 𝑆 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
35 |
|
simpl |
⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) |
36 |
|
iscn |
⊢ ( ( ( 𝑅 ×t 𝑆 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) → ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑅 ) ↔ ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) ⟶ 𝑋 ∧ ∀ 𝑤 ∈ 𝑅 ( ◡ ( 1st ↾ ( 𝑋 × 𝑌 ) ) “ 𝑤 ) ∈ ( 𝑅 ×t 𝑆 ) ) ) ) |
37 |
34 35 36
|
syl2anc |
⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑅 ) ↔ ( ( 1st ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) ⟶ 𝑋 ∧ ∀ 𝑤 ∈ 𝑅 ( ◡ ( 1st ↾ ( 𝑋 × 𝑌 ) ) “ 𝑤 ) ∈ ( 𝑅 ×t 𝑆 ) ) ) ) |
38 |
2 33 37
|
mpbir2and |
⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ( 1st ↾ ( 𝑋 × 𝑌 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑅 ) ) |