| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f1stres | ⊢ ( 1st   ↾  ( 𝑋  ×  𝑌 ) ) : ( 𝑋  ×  𝑌 ) ⟶ 𝑋 | 
						
							| 2 | 1 | a1i | ⊢ ( ( 𝑅  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑆  ∈  ( TopOn ‘ 𝑌 ) )  →  ( 1st   ↾  ( 𝑋  ×  𝑌 ) ) : ( 𝑋  ×  𝑌 ) ⟶ 𝑋 ) | 
						
							| 3 |  | ffn | ⊢ ( ( 1st   ↾  ( 𝑋  ×  𝑌 ) ) : ( 𝑋  ×  𝑌 ) ⟶ 𝑋  →  ( 1st   ↾  ( 𝑋  ×  𝑌 ) )  Fn  ( 𝑋  ×  𝑌 ) ) | 
						
							| 4 |  | elpreima | ⊢ ( ( 1st   ↾  ( 𝑋  ×  𝑌 ) )  Fn  ( 𝑋  ×  𝑌 )  →  ( 𝑧  ∈  ( ◡ ( 1st   ↾  ( 𝑋  ×  𝑌 ) )  “  𝑤 )  ↔  ( 𝑧  ∈  ( 𝑋  ×  𝑌 )  ∧  ( ( 1st   ↾  ( 𝑋  ×  𝑌 ) ) ‘ 𝑧 )  ∈  𝑤 ) ) ) | 
						
							| 5 | 1 3 4 | mp2b | ⊢ ( 𝑧  ∈  ( ◡ ( 1st   ↾  ( 𝑋  ×  𝑌 ) )  “  𝑤 )  ↔  ( 𝑧  ∈  ( 𝑋  ×  𝑌 )  ∧  ( ( 1st   ↾  ( 𝑋  ×  𝑌 ) ) ‘ 𝑧 )  ∈  𝑤 ) ) | 
						
							| 6 |  | fvres | ⊢ ( 𝑧  ∈  ( 𝑋  ×  𝑌 )  →  ( ( 1st   ↾  ( 𝑋  ×  𝑌 ) ) ‘ 𝑧 )  =  ( 1st  ‘ 𝑧 ) ) | 
						
							| 7 | 6 | eleq1d | ⊢ ( 𝑧  ∈  ( 𝑋  ×  𝑌 )  →  ( ( ( 1st   ↾  ( 𝑋  ×  𝑌 ) ) ‘ 𝑧 )  ∈  𝑤  ↔  ( 1st  ‘ 𝑧 )  ∈  𝑤 ) ) | 
						
							| 8 |  | 1st2nd2 | ⊢ ( 𝑧  ∈  ( 𝑋  ×  𝑌 )  →  𝑧  =  〈 ( 1st  ‘ 𝑧 ) ,  ( 2nd  ‘ 𝑧 ) 〉 ) | 
						
							| 9 |  | xp2nd | ⊢ ( 𝑧  ∈  ( 𝑋  ×  𝑌 )  →  ( 2nd  ‘ 𝑧 )  ∈  𝑌 ) | 
						
							| 10 |  | elxp6 | ⊢ ( 𝑧  ∈  ( 𝑤  ×  𝑌 )  ↔  ( 𝑧  =  〈 ( 1st  ‘ 𝑧 ) ,  ( 2nd  ‘ 𝑧 ) 〉  ∧  ( ( 1st  ‘ 𝑧 )  ∈  𝑤  ∧  ( 2nd  ‘ 𝑧 )  ∈  𝑌 ) ) ) | 
						
							| 11 |  | anass | ⊢ ( ( ( 𝑧  =  〈 ( 1st  ‘ 𝑧 ) ,  ( 2nd  ‘ 𝑧 ) 〉  ∧  ( 1st  ‘ 𝑧 )  ∈  𝑤 )  ∧  ( 2nd  ‘ 𝑧 )  ∈  𝑌 )  ↔  ( 𝑧  =  〈 ( 1st  ‘ 𝑧 ) ,  ( 2nd  ‘ 𝑧 ) 〉  ∧  ( ( 1st  ‘ 𝑧 )  ∈  𝑤  ∧  ( 2nd  ‘ 𝑧 )  ∈  𝑌 ) ) ) | 
						
							| 12 |  | an32 | ⊢ ( ( ( 𝑧  =  〈 ( 1st  ‘ 𝑧 ) ,  ( 2nd  ‘ 𝑧 ) 〉  ∧  ( 1st  ‘ 𝑧 )  ∈  𝑤 )  ∧  ( 2nd  ‘ 𝑧 )  ∈  𝑌 )  ↔  ( ( 𝑧  =  〈 ( 1st  ‘ 𝑧 ) ,  ( 2nd  ‘ 𝑧 ) 〉  ∧  ( 2nd  ‘ 𝑧 )  ∈  𝑌 )  ∧  ( 1st  ‘ 𝑧 )  ∈  𝑤 ) ) | 
						
							| 13 | 10 11 12 | 3bitr2i | ⊢ ( 𝑧  ∈  ( 𝑤  ×  𝑌 )  ↔  ( ( 𝑧  =  〈 ( 1st  ‘ 𝑧 ) ,  ( 2nd  ‘ 𝑧 ) 〉  ∧  ( 2nd  ‘ 𝑧 )  ∈  𝑌 )  ∧  ( 1st  ‘ 𝑧 )  ∈  𝑤 ) ) | 
						
							| 14 | 13 | baib | ⊢ ( ( 𝑧  =  〈 ( 1st  ‘ 𝑧 ) ,  ( 2nd  ‘ 𝑧 ) 〉  ∧  ( 2nd  ‘ 𝑧 )  ∈  𝑌 )  →  ( 𝑧  ∈  ( 𝑤  ×  𝑌 )  ↔  ( 1st  ‘ 𝑧 )  ∈  𝑤 ) ) | 
						
							| 15 | 8 9 14 | syl2anc | ⊢ ( 𝑧  ∈  ( 𝑋  ×  𝑌 )  →  ( 𝑧  ∈  ( 𝑤  ×  𝑌 )  ↔  ( 1st  ‘ 𝑧 )  ∈  𝑤 ) ) | 
						
							| 16 | 7 15 | bitr4d | ⊢ ( 𝑧  ∈  ( 𝑋  ×  𝑌 )  →  ( ( ( 1st   ↾  ( 𝑋  ×  𝑌 ) ) ‘ 𝑧 )  ∈  𝑤  ↔  𝑧  ∈  ( 𝑤  ×  𝑌 ) ) ) | 
						
							| 17 | 16 | pm5.32i | ⊢ ( ( 𝑧  ∈  ( 𝑋  ×  𝑌 )  ∧  ( ( 1st   ↾  ( 𝑋  ×  𝑌 ) ) ‘ 𝑧 )  ∈  𝑤 )  ↔  ( 𝑧  ∈  ( 𝑋  ×  𝑌 )  ∧  𝑧  ∈  ( 𝑤  ×  𝑌 ) ) ) | 
						
							| 18 | 5 17 | bitri | ⊢ ( 𝑧  ∈  ( ◡ ( 1st   ↾  ( 𝑋  ×  𝑌 ) )  “  𝑤 )  ↔  ( 𝑧  ∈  ( 𝑋  ×  𝑌 )  ∧  𝑧  ∈  ( 𝑤  ×  𝑌 ) ) ) | 
						
							| 19 |  | toponss | ⊢ ( ( 𝑅  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑤  ∈  𝑅 )  →  𝑤  ⊆  𝑋 ) | 
						
							| 20 | 19 | adantlr | ⊢ ( ( ( 𝑅  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑆  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝑤  ∈  𝑅 )  →  𝑤  ⊆  𝑋 ) | 
						
							| 21 |  | xpss1 | ⊢ ( 𝑤  ⊆  𝑋  →  ( 𝑤  ×  𝑌 )  ⊆  ( 𝑋  ×  𝑌 ) ) | 
						
							| 22 | 20 21 | syl | ⊢ ( ( ( 𝑅  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑆  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝑤  ∈  𝑅 )  →  ( 𝑤  ×  𝑌 )  ⊆  ( 𝑋  ×  𝑌 ) ) | 
						
							| 23 | 22 | sseld | ⊢ ( ( ( 𝑅  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑆  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝑤  ∈  𝑅 )  →  ( 𝑧  ∈  ( 𝑤  ×  𝑌 )  →  𝑧  ∈  ( 𝑋  ×  𝑌 ) ) ) | 
						
							| 24 | 23 | pm4.71rd | ⊢ ( ( ( 𝑅  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑆  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝑤  ∈  𝑅 )  →  ( 𝑧  ∈  ( 𝑤  ×  𝑌 )  ↔  ( 𝑧  ∈  ( 𝑋  ×  𝑌 )  ∧  𝑧  ∈  ( 𝑤  ×  𝑌 ) ) ) ) | 
						
							| 25 | 18 24 | bitr4id | ⊢ ( ( ( 𝑅  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑆  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝑤  ∈  𝑅 )  →  ( 𝑧  ∈  ( ◡ ( 1st   ↾  ( 𝑋  ×  𝑌 ) )  “  𝑤 )  ↔  𝑧  ∈  ( 𝑤  ×  𝑌 ) ) ) | 
						
							| 26 | 25 | eqrdv | ⊢ ( ( ( 𝑅  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑆  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝑤  ∈  𝑅 )  →  ( ◡ ( 1st   ↾  ( 𝑋  ×  𝑌 ) )  “  𝑤 )  =  ( 𝑤  ×  𝑌 ) ) | 
						
							| 27 |  | toponmax | ⊢ ( 𝑆  ∈  ( TopOn ‘ 𝑌 )  →  𝑌  ∈  𝑆 ) | 
						
							| 28 | 27 | ad2antlr | ⊢ ( ( ( 𝑅  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑆  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝑤  ∈  𝑅 )  →  𝑌  ∈  𝑆 ) | 
						
							| 29 |  | txopn | ⊢ ( ( ( 𝑅  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑆  ∈  ( TopOn ‘ 𝑌 ) )  ∧  ( 𝑤  ∈  𝑅  ∧  𝑌  ∈  𝑆 ) )  →  ( 𝑤  ×  𝑌 )  ∈  ( 𝑅  ×t  𝑆 ) ) | 
						
							| 30 | 29 | anassrs | ⊢ ( ( ( ( 𝑅  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑆  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝑤  ∈  𝑅 )  ∧  𝑌  ∈  𝑆 )  →  ( 𝑤  ×  𝑌 )  ∈  ( 𝑅  ×t  𝑆 ) ) | 
						
							| 31 | 28 30 | mpdan | ⊢ ( ( ( 𝑅  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑆  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝑤  ∈  𝑅 )  →  ( 𝑤  ×  𝑌 )  ∈  ( 𝑅  ×t  𝑆 ) ) | 
						
							| 32 | 26 31 | eqeltrd | ⊢ ( ( ( 𝑅  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑆  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝑤  ∈  𝑅 )  →  ( ◡ ( 1st   ↾  ( 𝑋  ×  𝑌 ) )  “  𝑤 )  ∈  ( 𝑅  ×t  𝑆 ) ) | 
						
							| 33 | 32 | ralrimiva | ⊢ ( ( 𝑅  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑆  ∈  ( TopOn ‘ 𝑌 ) )  →  ∀ 𝑤  ∈  𝑅 ( ◡ ( 1st   ↾  ( 𝑋  ×  𝑌 ) )  “  𝑤 )  ∈  ( 𝑅  ×t  𝑆 ) ) | 
						
							| 34 |  | txtopon | ⊢ ( ( 𝑅  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑆  ∈  ( TopOn ‘ 𝑌 ) )  →  ( 𝑅  ×t  𝑆 )  ∈  ( TopOn ‘ ( 𝑋  ×  𝑌 ) ) ) | 
						
							| 35 |  | simpl | ⊢ ( ( 𝑅  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑆  ∈  ( TopOn ‘ 𝑌 ) )  →  𝑅  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 36 |  | iscn | ⊢ ( ( ( 𝑅  ×t  𝑆 )  ∈  ( TopOn ‘ ( 𝑋  ×  𝑌 ) )  ∧  𝑅  ∈  ( TopOn ‘ 𝑋 ) )  →  ( ( 1st   ↾  ( 𝑋  ×  𝑌 ) )  ∈  ( ( 𝑅  ×t  𝑆 )  Cn  𝑅 )  ↔  ( ( 1st   ↾  ( 𝑋  ×  𝑌 ) ) : ( 𝑋  ×  𝑌 ) ⟶ 𝑋  ∧  ∀ 𝑤  ∈  𝑅 ( ◡ ( 1st   ↾  ( 𝑋  ×  𝑌 ) )  “  𝑤 )  ∈  ( 𝑅  ×t  𝑆 ) ) ) ) | 
						
							| 37 | 34 35 36 | syl2anc | ⊢ ( ( 𝑅  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑆  ∈  ( TopOn ‘ 𝑌 ) )  →  ( ( 1st   ↾  ( 𝑋  ×  𝑌 ) )  ∈  ( ( 𝑅  ×t  𝑆 )  Cn  𝑅 )  ↔  ( ( 1st   ↾  ( 𝑋  ×  𝑌 ) ) : ( 𝑋  ×  𝑌 ) ⟶ 𝑋  ∧  ∀ 𝑤  ∈  𝑅 ( ◡ ( 1st   ↾  ( 𝑋  ×  𝑌 ) )  “  𝑤 )  ∈  ( 𝑅  ×t  𝑆 ) ) ) ) | 
						
							| 38 | 2 33 37 | mpbir2and | ⊢ ( ( 𝑅  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑆  ∈  ( TopOn ‘ 𝑌 ) )  →  ( 1st   ↾  ( 𝑋  ×  𝑌 ) )  ∈  ( ( 𝑅  ×t  𝑆 )  Cn  𝑅 ) ) |