| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1stctop |
⊢ ( 𝑅 ∈ 1stω → 𝑅 ∈ Top ) |
| 2 |
|
1stctop |
⊢ ( 𝑆 ∈ 1stω → 𝑆 ∈ Top ) |
| 3 |
|
txtop |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) |
| 4 |
1 2 3
|
syl2an |
⊢ ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) |
| 5 |
|
eqid |
⊢ ∪ 𝑅 = ∪ 𝑅 |
| 6 |
5
|
1stcclb |
⊢ ( ( 𝑅 ∈ 1stω ∧ 𝑢 ∈ ∪ 𝑅 ) → ∃ 𝑎 ∈ 𝒫 𝑅 ( 𝑎 ≼ ω ∧ ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ) ) |
| 7 |
6
|
ad2ant2r |
⊢ ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) → ∃ 𝑎 ∈ 𝒫 𝑅 ( 𝑎 ≼ ω ∧ ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ) ) |
| 8 |
|
eqid |
⊢ ∪ 𝑆 = ∪ 𝑆 |
| 9 |
8
|
1stcclb |
⊢ ( ( 𝑆 ∈ 1stω ∧ 𝑣 ∈ ∪ 𝑆 ) → ∃ 𝑏 ∈ 𝒫 𝑆 ( 𝑏 ≼ ω ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) |
| 10 |
9
|
ad2ant2l |
⊢ ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) → ∃ 𝑏 ∈ 𝒫 𝑆 ( 𝑏 ≼ ω ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) |
| 11 |
|
reeanv |
⊢ ( ∃ 𝑎 ∈ 𝒫 𝑅 ∃ 𝑏 ∈ 𝒫 𝑆 ( ( 𝑎 ≼ ω ∧ ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ) ∧ ( 𝑏 ≼ ω ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) ↔ ( ∃ 𝑎 ∈ 𝒫 𝑅 ( 𝑎 ≼ ω ∧ ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ) ∧ ∃ 𝑏 ∈ 𝒫 𝑆 ( 𝑏 ≼ ω ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) ) |
| 12 |
|
an4 |
⊢ ( ( ( 𝑎 ≼ ω ∧ ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ) ∧ ( 𝑏 ≼ ω ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) ↔ ( ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ∧ ( ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) ) |
| 13 |
|
txopn |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑚 ∈ 𝑅 ∧ 𝑛 ∈ 𝑆 ) ) → ( 𝑚 × 𝑛 ) ∈ ( 𝑅 ×t 𝑆 ) ) |
| 14 |
13
|
ralrimivva |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ∀ 𝑚 ∈ 𝑅 ∀ 𝑛 ∈ 𝑆 ( 𝑚 × 𝑛 ) ∈ ( 𝑅 ×t 𝑆 ) ) |
| 15 |
1 2 14
|
syl2an |
⊢ ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) → ∀ 𝑚 ∈ 𝑅 ∀ 𝑛 ∈ 𝑆 ( 𝑚 × 𝑛 ) ∈ ( 𝑅 ×t 𝑆 ) ) |
| 16 |
15
|
adantr |
⊢ ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) → ∀ 𝑚 ∈ 𝑅 ∀ 𝑛 ∈ 𝑆 ( 𝑚 × 𝑛 ) ∈ ( 𝑅 ×t 𝑆 ) ) |
| 17 |
|
elpwi |
⊢ ( 𝑎 ∈ 𝒫 𝑅 → 𝑎 ⊆ 𝑅 ) |
| 18 |
|
ssralv |
⊢ ( 𝑎 ⊆ 𝑅 → ( ∀ 𝑚 ∈ 𝑅 ∀ 𝑛 ∈ 𝑆 ( 𝑚 × 𝑛 ) ∈ ( 𝑅 ×t 𝑆 ) → ∀ 𝑚 ∈ 𝑎 ∀ 𝑛 ∈ 𝑆 ( 𝑚 × 𝑛 ) ∈ ( 𝑅 ×t 𝑆 ) ) ) |
| 19 |
17 18
|
syl |
⊢ ( 𝑎 ∈ 𝒫 𝑅 → ( ∀ 𝑚 ∈ 𝑅 ∀ 𝑛 ∈ 𝑆 ( 𝑚 × 𝑛 ) ∈ ( 𝑅 ×t 𝑆 ) → ∀ 𝑚 ∈ 𝑎 ∀ 𝑛 ∈ 𝑆 ( 𝑚 × 𝑛 ) ∈ ( 𝑅 ×t 𝑆 ) ) ) |
| 20 |
|
elpwi |
⊢ ( 𝑏 ∈ 𝒫 𝑆 → 𝑏 ⊆ 𝑆 ) |
| 21 |
|
ssralv |
⊢ ( 𝑏 ⊆ 𝑆 → ( ∀ 𝑛 ∈ 𝑆 ( 𝑚 × 𝑛 ) ∈ ( 𝑅 ×t 𝑆 ) → ∀ 𝑛 ∈ 𝑏 ( 𝑚 × 𝑛 ) ∈ ( 𝑅 ×t 𝑆 ) ) ) |
| 22 |
20 21
|
syl |
⊢ ( 𝑏 ∈ 𝒫 𝑆 → ( ∀ 𝑛 ∈ 𝑆 ( 𝑚 × 𝑛 ) ∈ ( 𝑅 ×t 𝑆 ) → ∀ 𝑛 ∈ 𝑏 ( 𝑚 × 𝑛 ) ∈ ( 𝑅 ×t 𝑆 ) ) ) |
| 23 |
22
|
ralimdv |
⊢ ( 𝑏 ∈ 𝒫 𝑆 → ( ∀ 𝑚 ∈ 𝑎 ∀ 𝑛 ∈ 𝑆 ( 𝑚 × 𝑛 ) ∈ ( 𝑅 ×t 𝑆 ) → ∀ 𝑚 ∈ 𝑎 ∀ 𝑛 ∈ 𝑏 ( 𝑚 × 𝑛 ) ∈ ( 𝑅 ×t 𝑆 ) ) ) |
| 24 |
19 23
|
sylan9 |
⊢ ( ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) → ( ∀ 𝑚 ∈ 𝑅 ∀ 𝑛 ∈ 𝑆 ( 𝑚 × 𝑛 ) ∈ ( 𝑅 ×t 𝑆 ) → ∀ 𝑚 ∈ 𝑎 ∀ 𝑛 ∈ 𝑏 ( 𝑚 × 𝑛 ) ∈ ( 𝑅 ×t 𝑆 ) ) ) |
| 25 |
16 24
|
mpan9 |
⊢ ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) → ∀ 𝑚 ∈ 𝑎 ∀ 𝑛 ∈ 𝑏 ( 𝑚 × 𝑛 ) ∈ ( 𝑅 ×t 𝑆 ) ) |
| 26 |
|
eqid |
⊢ ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) = ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) |
| 27 |
26
|
fmpo |
⊢ ( ∀ 𝑚 ∈ 𝑎 ∀ 𝑛 ∈ 𝑏 ( 𝑚 × 𝑛 ) ∈ ( 𝑅 ×t 𝑆 ) ↔ ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) : ( 𝑎 × 𝑏 ) ⟶ ( 𝑅 ×t 𝑆 ) ) |
| 28 |
25 27
|
sylib |
⊢ ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) → ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) : ( 𝑎 × 𝑏 ) ⟶ ( 𝑅 ×t 𝑆 ) ) |
| 29 |
28
|
frnd |
⊢ ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) → ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ⊆ ( 𝑅 ×t 𝑆 ) ) |
| 30 |
|
ovex |
⊢ ( 𝑅 ×t 𝑆 ) ∈ V |
| 31 |
30
|
elpw2 |
⊢ ( ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ↔ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ⊆ ( 𝑅 ×t 𝑆 ) ) |
| 32 |
29 31
|
sylibr |
⊢ ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) → ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ) |
| 33 |
32
|
adantr |
⊢ ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ∧ ( ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) ) → ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ) |
| 34 |
|
omelon |
⊢ ω ∈ On |
| 35 |
|
xpct |
⊢ ( ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) → ( 𝑎 × 𝑏 ) ≼ ω ) |
| 36 |
|
ondomen |
⊢ ( ( ω ∈ On ∧ ( 𝑎 × 𝑏 ) ≼ ω ) → ( 𝑎 × 𝑏 ) ∈ dom card ) |
| 37 |
34 35 36
|
sylancr |
⊢ ( ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) → ( 𝑎 × 𝑏 ) ∈ dom card ) |
| 38 |
|
vex |
⊢ 𝑚 ∈ V |
| 39 |
|
vex |
⊢ 𝑛 ∈ V |
| 40 |
38 39
|
xpex |
⊢ ( 𝑚 × 𝑛 ) ∈ V |
| 41 |
26 40
|
fnmpoi |
⊢ ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) Fn ( 𝑎 × 𝑏 ) |
| 42 |
|
dffn4 |
⊢ ( ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) Fn ( 𝑎 × 𝑏 ) ↔ ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) : ( 𝑎 × 𝑏 ) –onto→ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ) |
| 43 |
41 42
|
mpbi |
⊢ ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) : ( 𝑎 × 𝑏 ) –onto→ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) |
| 44 |
|
fodomnum |
⊢ ( ( 𝑎 × 𝑏 ) ∈ dom card → ( ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) : ( 𝑎 × 𝑏 ) –onto→ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) → ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ≼ ( 𝑎 × 𝑏 ) ) ) |
| 45 |
37 43 44
|
mpisyl |
⊢ ( ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) → ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ≼ ( 𝑎 × 𝑏 ) ) |
| 46 |
|
domtr |
⊢ ( ( ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ≼ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ≼ ω ) → ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ≼ ω ) |
| 47 |
45 35 46
|
syl2anc |
⊢ ( ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) → ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ≼ ω ) |
| 48 |
47
|
ad2antrl |
⊢ ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ∧ ( ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) ) → ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ≼ ω ) |
| 49 |
1 2
|
anim12i |
⊢ ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) → ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ) |
| 50 |
49
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ∧ ( ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) ) → ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ) |
| 51 |
|
eltx |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ↔ ∀ 𝑤 ∈ 𝑧 ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 𝑤 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) ) |
| 52 |
50 51
|
syl |
⊢ ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ∧ ( ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) ) → ( 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ↔ ∀ 𝑤 ∈ 𝑧 ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 𝑤 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) ) |
| 53 |
|
eleq1 |
⊢ ( 𝑤 = 〈 𝑢 , 𝑣 〉 → ( 𝑤 ∈ ( 𝑟 × 𝑠 ) ↔ 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ) ) |
| 54 |
53
|
anbi1d |
⊢ ( 𝑤 = 〈 𝑢 , 𝑣 〉 → ( ( 𝑤 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ↔ ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) ) |
| 55 |
54
|
2rexbidv |
⊢ ( 𝑤 = 〈 𝑢 , 𝑣 〉 → ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 𝑤 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ↔ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) ) |
| 56 |
55
|
rspccv |
⊢ ( ∀ 𝑤 ∈ 𝑧 ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 𝑤 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) → ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) ) |
| 57 |
|
r19.27v |
⊢ ( ( ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) → ∀ 𝑟 ∈ 𝑅 ( ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) |
| 58 |
|
r19.29 |
⊢ ( ( ∀ 𝑟 ∈ 𝑅 ( ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ∧ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → ∃ 𝑟 ∈ 𝑅 ( ( ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ∧ ∃ 𝑠 ∈ 𝑆 ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) ) |
| 59 |
|
r19.29 |
⊢ ( ( ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ∃ 𝑠 ∈ 𝑆 ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → ∃ 𝑠 ∈ 𝑆 ( ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) ) |
| 60 |
|
opelxp |
⊢ ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ↔ ( 𝑢 ∈ 𝑟 ∧ 𝑣 ∈ 𝑠 ) ) |
| 61 |
|
pm3.35 |
⊢ ( ( 𝑢 ∈ 𝑟 ∧ ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ) → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) |
| 62 |
|
pm3.35 |
⊢ ( ( 𝑣 ∈ 𝑠 ∧ ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) |
| 63 |
61 62
|
anim12i |
⊢ ( ( ( 𝑢 ∈ 𝑟 ∧ ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ) ∧ ( 𝑣 ∈ 𝑠 ∧ ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) → ( ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) |
| 64 |
63
|
an4s |
⊢ ( ( ( 𝑢 ∈ 𝑟 ∧ 𝑣 ∈ 𝑠 ) ∧ ( ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) → ( ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) |
| 65 |
60 64
|
sylanb |
⊢ ( ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) → ( ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) |
| 66 |
65
|
anim1i |
⊢ ( ( ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) → ( ( ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) |
| 67 |
66
|
anasss |
⊢ ( ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( ( ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → ( ( ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) |
| 68 |
67
|
an12s |
⊢ ( ( ( ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ∧ ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → ( ( ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) |
| 69 |
68
|
expl |
⊢ ( ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) → ( ( ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → ( ( ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) ) |
| 70 |
69
|
reximdv |
⊢ ( ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) → ( ∃ 𝑠 ∈ 𝑆 ( ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → ∃ 𝑠 ∈ 𝑆 ( ( ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) ) |
| 71 |
59 70
|
syl5 |
⊢ ( ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) → ( ( ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ∃ 𝑠 ∈ 𝑆 ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → ∃ 𝑠 ∈ 𝑆 ( ( ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) ) |
| 72 |
71
|
impl |
⊢ ( ( ( ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ∧ ∃ 𝑠 ∈ 𝑆 ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → ∃ 𝑠 ∈ 𝑆 ( ( ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) |
| 73 |
72
|
reximi |
⊢ ( ∃ 𝑟 ∈ 𝑅 ( ( ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ∧ ∃ 𝑠 ∈ 𝑆 ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( ( ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) |
| 74 |
58 73
|
syl |
⊢ ( ( ∀ 𝑟 ∈ 𝑅 ( ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ∧ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( ( ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) |
| 75 |
57 74
|
sylan |
⊢ ( ( ( ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ∧ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( ( ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) |
| 76 |
|
reeanv |
⊢ ( ∃ 𝑝 ∈ 𝑎 ∃ 𝑞 ∈ 𝑏 ( ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ↔ ( ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) |
| 77 |
|
simpr1l |
⊢ ( ( ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ ( ( 𝑝 ∈ 𝑎 ∧ 𝑞 ∈ 𝑏 ) ∧ ( ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → 𝑝 ∈ 𝑎 ) |
| 78 |
|
simpr1r |
⊢ ( ( ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ ( ( 𝑝 ∈ 𝑎 ∧ 𝑞 ∈ 𝑏 ) ∧ ( ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → 𝑞 ∈ 𝑏 ) |
| 79 |
|
eqidd |
⊢ ( ( ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ ( ( 𝑝 ∈ 𝑎 ∧ 𝑞 ∈ 𝑏 ) ∧ ( ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → ( 𝑝 × 𝑞 ) = ( 𝑝 × 𝑞 ) ) |
| 80 |
|
xpeq1 |
⊢ ( 𝑚 = 𝑝 → ( 𝑚 × 𝑛 ) = ( 𝑝 × 𝑛 ) ) |
| 81 |
80
|
eqeq2d |
⊢ ( 𝑚 = 𝑝 → ( ( 𝑝 × 𝑞 ) = ( 𝑚 × 𝑛 ) ↔ ( 𝑝 × 𝑞 ) = ( 𝑝 × 𝑛 ) ) ) |
| 82 |
|
xpeq2 |
⊢ ( 𝑛 = 𝑞 → ( 𝑝 × 𝑛 ) = ( 𝑝 × 𝑞 ) ) |
| 83 |
82
|
eqeq2d |
⊢ ( 𝑛 = 𝑞 → ( ( 𝑝 × 𝑞 ) = ( 𝑝 × 𝑛 ) ↔ ( 𝑝 × 𝑞 ) = ( 𝑝 × 𝑞 ) ) ) |
| 84 |
81 83
|
rspc2ev |
⊢ ( ( 𝑝 ∈ 𝑎 ∧ 𝑞 ∈ 𝑏 ∧ ( 𝑝 × 𝑞 ) = ( 𝑝 × 𝑞 ) ) → ∃ 𝑚 ∈ 𝑎 ∃ 𝑛 ∈ 𝑏 ( 𝑝 × 𝑞 ) = ( 𝑚 × 𝑛 ) ) |
| 85 |
77 78 79 84
|
syl3anc |
⊢ ( ( ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ ( ( 𝑝 ∈ 𝑎 ∧ 𝑞 ∈ 𝑏 ) ∧ ( ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → ∃ 𝑚 ∈ 𝑎 ∃ 𝑛 ∈ 𝑏 ( 𝑝 × 𝑞 ) = ( 𝑚 × 𝑛 ) ) |
| 86 |
|
vex |
⊢ 𝑝 ∈ V |
| 87 |
|
vex |
⊢ 𝑞 ∈ V |
| 88 |
86 87
|
xpex |
⊢ ( 𝑝 × 𝑞 ) ∈ V |
| 89 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝑝 × 𝑞 ) → ( 𝑥 = ( 𝑚 × 𝑛 ) ↔ ( 𝑝 × 𝑞 ) = ( 𝑚 × 𝑛 ) ) ) |
| 90 |
89
|
2rexbidv |
⊢ ( 𝑥 = ( 𝑝 × 𝑞 ) → ( ∃ 𝑚 ∈ 𝑎 ∃ 𝑛 ∈ 𝑏 𝑥 = ( 𝑚 × 𝑛 ) ↔ ∃ 𝑚 ∈ 𝑎 ∃ 𝑛 ∈ 𝑏 ( 𝑝 × 𝑞 ) = ( 𝑚 × 𝑛 ) ) ) |
| 91 |
88 90
|
elab |
⊢ ( ( 𝑝 × 𝑞 ) ∈ { 𝑥 ∣ ∃ 𝑚 ∈ 𝑎 ∃ 𝑛 ∈ 𝑏 𝑥 = ( 𝑚 × 𝑛 ) } ↔ ∃ 𝑚 ∈ 𝑎 ∃ 𝑛 ∈ 𝑏 ( 𝑝 × 𝑞 ) = ( 𝑚 × 𝑛 ) ) |
| 92 |
85 91
|
sylibr |
⊢ ( ( ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ ( ( 𝑝 ∈ 𝑎 ∧ 𝑞 ∈ 𝑏 ) ∧ ( ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → ( 𝑝 × 𝑞 ) ∈ { 𝑥 ∣ ∃ 𝑚 ∈ 𝑎 ∃ 𝑛 ∈ 𝑏 𝑥 = ( 𝑚 × 𝑛 ) } ) |
| 93 |
26
|
rnmpo |
⊢ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) = { 𝑥 ∣ ∃ 𝑚 ∈ 𝑎 ∃ 𝑛 ∈ 𝑏 𝑥 = ( 𝑚 × 𝑛 ) } |
| 94 |
92 93
|
eleqtrrdi |
⊢ ( ( ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ ( ( 𝑝 ∈ 𝑎 ∧ 𝑞 ∈ 𝑏 ) ∧ ( ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → ( 𝑝 × 𝑞 ) ∈ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ) |
| 95 |
|
simpr2 |
⊢ ( ( ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ ( ( 𝑝 ∈ 𝑎 ∧ 𝑞 ∈ 𝑏 ) ∧ ( ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → ( ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) |
| 96 |
|
opelxpi |
⊢ ( ( 𝑢 ∈ 𝑝 ∧ 𝑣 ∈ 𝑞 ) → 〈 𝑢 , 𝑣 〉 ∈ ( 𝑝 × 𝑞 ) ) |
| 97 |
96
|
ad2ant2r |
⊢ ( ( ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) → 〈 𝑢 , 𝑣 〉 ∈ ( 𝑝 × 𝑞 ) ) |
| 98 |
95 97
|
syl |
⊢ ( ( ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ ( ( 𝑝 ∈ 𝑎 ∧ 𝑞 ∈ 𝑏 ) ∧ ( ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → 〈 𝑢 , 𝑣 〉 ∈ ( 𝑝 × 𝑞 ) ) |
| 99 |
|
xpss12 |
⊢ ( ( 𝑝 ⊆ 𝑟 ∧ 𝑞 ⊆ 𝑠 ) → ( 𝑝 × 𝑞 ) ⊆ ( 𝑟 × 𝑠 ) ) |
| 100 |
99
|
ad2ant2l |
⊢ ( ( ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) → ( 𝑝 × 𝑞 ) ⊆ ( 𝑟 × 𝑠 ) ) |
| 101 |
95 100
|
syl |
⊢ ( ( ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ ( ( 𝑝 ∈ 𝑎 ∧ 𝑞 ∈ 𝑏 ) ∧ ( ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → ( 𝑝 × 𝑞 ) ⊆ ( 𝑟 × 𝑠 ) ) |
| 102 |
|
simpr3 |
⊢ ( ( ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ ( ( 𝑝 ∈ 𝑎 ∧ 𝑞 ∈ 𝑏 ) ∧ ( ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) |
| 103 |
101 102
|
sstrd |
⊢ ( ( ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ ( ( 𝑝 ∈ 𝑎 ∧ 𝑞 ∈ 𝑏 ) ∧ ( ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → ( 𝑝 × 𝑞 ) ⊆ 𝑧 ) |
| 104 |
|
eleq2 |
⊢ ( 𝑤 = ( 𝑝 × 𝑞 ) → ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ↔ 〈 𝑢 , 𝑣 〉 ∈ ( 𝑝 × 𝑞 ) ) ) |
| 105 |
|
sseq1 |
⊢ ( 𝑤 = ( 𝑝 × 𝑞 ) → ( 𝑤 ⊆ 𝑧 ↔ ( 𝑝 × 𝑞 ) ⊆ 𝑧 ) ) |
| 106 |
104 105
|
anbi12d |
⊢ ( 𝑤 = ( 𝑝 × 𝑞 ) → ( ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ↔ ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑝 × 𝑞 ) ∧ ( 𝑝 × 𝑞 ) ⊆ 𝑧 ) ) ) |
| 107 |
106
|
rspcev |
⊢ ( ( ( 𝑝 × 𝑞 ) ∈ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ∧ ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑝 × 𝑞 ) ∧ ( 𝑝 × 𝑞 ) ⊆ 𝑧 ) ) → ∃ 𝑤 ∈ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) |
| 108 |
94 98 103 107
|
syl12anc |
⊢ ( ( ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ ( ( 𝑝 ∈ 𝑎 ∧ 𝑞 ∈ 𝑏 ) ∧ ( ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → ∃ 𝑤 ∈ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) |
| 109 |
108
|
3exp2 |
⊢ ( ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( 𝑝 ∈ 𝑎 ∧ 𝑞 ∈ 𝑏 ) → ( ( ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) → ( ( 𝑟 × 𝑠 ) ⊆ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
| 110 |
109
|
rexlimdvv |
⊢ ( ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ∃ 𝑝 ∈ 𝑎 ∃ 𝑞 ∈ 𝑏 ( ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) → ( ( 𝑟 × 𝑠 ) ⊆ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 111 |
76 110
|
biimtrrid |
⊢ ( ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) → ( ( 𝑟 × 𝑠 ) ⊆ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 112 |
111
|
impd |
⊢ ( ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( ( ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) → ∃ 𝑤 ∈ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
| 113 |
112
|
rexlimdvva |
⊢ ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ) → ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( ( ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) → ∃ 𝑤 ∈ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
| 114 |
75 113
|
syl5 |
⊢ ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ) → ( ( ( ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ∧ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → ∃ 𝑤 ∈ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
| 115 |
114
|
expd |
⊢ ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ) → ( ( ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) → ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) → ∃ 𝑤 ∈ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 116 |
115
|
impr |
⊢ ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ∧ ( ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) ) → ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) → ∃ 𝑤 ∈ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
| 117 |
56 116
|
syl9r |
⊢ ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ∧ ( ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) ) → ( ∀ 𝑤 ∈ 𝑧 ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 𝑤 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) → ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 118 |
52 117
|
sylbid |
⊢ ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ∧ ( ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) ) → ( 𝑧 ∈ ( 𝑅 ×t 𝑆 ) → ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 119 |
118
|
ralrimiv |
⊢ ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ∧ ( ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) ) → ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
| 120 |
|
breq1 |
⊢ ( 𝑦 = ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) → ( 𝑦 ≼ ω ↔ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ≼ ω ) ) |
| 121 |
|
rexeq |
⊢ ( 𝑦 = ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) → ( ∃ 𝑤 ∈ 𝑦 ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ↔ ∃ 𝑤 ∈ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
| 122 |
121
|
imbi2d |
⊢ ( 𝑦 = ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) → ( ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ↔ ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 123 |
122
|
ralbidv |
⊢ ( 𝑦 = ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) → ( ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ↔ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 124 |
120 123
|
anbi12d |
⊢ ( 𝑦 = ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) → ( ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ↔ ( ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ≼ ω ∧ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
| 125 |
124
|
rspcev |
⊢ ( ( ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ∧ ( ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ≼ ω ∧ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) → ∃ 𝑦 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 126 |
33 48 119 125
|
syl12anc |
⊢ ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ∧ ( ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) ) → ∃ 𝑦 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 127 |
126
|
ex |
⊢ ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) → ( ( ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ∧ ( ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) → ∃ 𝑦 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
| 128 |
12 127
|
biimtrid |
⊢ ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) → ( ( ( 𝑎 ≼ ω ∧ ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ) ∧ ( 𝑏 ≼ ω ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) → ∃ 𝑦 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
| 129 |
128
|
rexlimdvva |
⊢ ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) → ( ∃ 𝑎 ∈ 𝒫 𝑅 ∃ 𝑏 ∈ 𝒫 𝑆 ( ( 𝑎 ≼ ω ∧ ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ) ∧ ( 𝑏 ≼ ω ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) → ∃ 𝑦 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
| 130 |
11 129
|
biimtrrid |
⊢ ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) → ( ( ∃ 𝑎 ∈ 𝒫 𝑅 ( 𝑎 ≼ ω ∧ ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ) ∧ ∃ 𝑏 ∈ 𝒫 𝑆 ( 𝑏 ≼ ω ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) → ∃ 𝑦 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
| 131 |
7 10 130
|
mp2and |
⊢ ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) → ∃ 𝑦 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 132 |
131
|
ralrimivva |
⊢ ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) → ∀ 𝑢 ∈ ∪ 𝑅 ∀ 𝑣 ∈ ∪ 𝑆 ∃ 𝑦 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 133 |
|
eleq1 |
⊢ ( 𝑥 = 〈 𝑢 , 𝑣 〉 → ( 𝑥 ∈ 𝑧 ↔ 〈 𝑢 , 𝑣 〉 ∈ 𝑧 ) ) |
| 134 |
|
eleq1 |
⊢ ( 𝑥 = 〈 𝑢 , 𝑣 〉 → ( 𝑥 ∈ 𝑤 ↔ 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ) ) |
| 135 |
134
|
anbi1d |
⊢ ( 𝑥 = 〈 𝑢 , 𝑣 〉 → ( ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ↔ ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
| 136 |
135
|
rexbidv |
⊢ ( 𝑥 = 〈 𝑢 , 𝑣 〉 → ( ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ↔ ∃ 𝑤 ∈ 𝑦 ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
| 137 |
133 136
|
imbi12d |
⊢ ( 𝑥 = 〈 𝑢 , 𝑣 〉 → ( ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ↔ ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 138 |
137
|
ralbidv |
⊢ ( 𝑥 = 〈 𝑢 , 𝑣 〉 → ( ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ↔ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 139 |
138
|
anbi2d |
⊢ ( 𝑥 = 〈 𝑢 , 𝑣 〉 → ( ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ↔ ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
| 140 |
139
|
rexbidv |
⊢ ( 𝑥 = 〈 𝑢 , 𝑣 〉 → ( ∃ 𝑦 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ↔ ∃ 𝑦 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
| 141 |
140
|
ralxp |
⊢ ( ∀ 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∃ 𝑦 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ↔ ∀ 𝑢 ∈ ∪ 𝑅 ∀ 𝑣 ∈ ∪ 𝑆 ∃ 𝑦 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 142 |
132 141
|
sylibr |
⊢ ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) → ∀ 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∃ 𝑦 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 143 |
5 8
|
txuni |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( ∪ 𝑅 × ∪ 𝑆 ) = ∪ ( 𝑅 ×t 𝑆 ) ) |
| 144 |
1 2 143
|
syl2an |
⊢ ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) → ( ∪ 𝑅 × ∪ 𝑆 ) = ∪ ( 𝑅 ×t 𝑆 ) ) |
| 145 |
142 144
|
raleqtrdv |
⊢ ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) → ∀ 𝑥 ∈ ∪ ( 𝑅 ×t 𝑆 ) ∃ 𝑦 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 146 |
|
eqid |
⊢ ∪ ( 𝑅 ×t 𝑆 ) = ∪ ( 𝑅 ×t 𝑆 ) |
| 147 |
146
|
is1stc2 |
⊢ ( ( 𝑅 ×t 𝑆 ) ∈ 1stω ↔ ( ( 𝑅 ×t 𝑆 ) ∈ Top ∧ ∀ 𝑥 ∈ ∪ ( 𝑅 ×t 𝑆 ) ∃ 𝑦 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
| 148 |
4 145 147
|
sylanbrc |
⊢ ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) → ( 𝑅 ×t 𝑆 ) ∈ 1stω ) |