Step |
Hyp |
Ref |
Expression |
1 |
|
f2ndres |
⊢ ( 2nd ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) ⟶ 𝑌 |
2 |
1
|
a1i |
⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ( 2nd ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ) |
3 |
|
ffn |
⊢ ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) ⟶ 𝑌 → ( 2nd ↾ ( 𝑋 × 𝑌 ) ) Fn ( 𝑋 × 𝑌 ) ) |
4 |
|
elpreima |
⊢ ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) Fn ( 𝑋 × 𝑌 ) → ( 𝑧 ∈ ( ◡ ( 2nd ↾ ( 𝑋 × 𝑌 ) ) “ 𝑤 ) ↔ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ∧ ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑧 ) ∈ 𝑤 ) ) ) |
5 |
1 3 4
|
mp2b |
⊢ ( 𝑧 ∈ ( ◡ ( 2nd ↾ ( 𝑋 × 𝑌 ) ) “ 𝑤 ) ↔ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ∧ ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑧 ) ∈ 𝑤 ) ) |
6 |
|
fvres |
⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑧 ) = ( 2nd ‘ 𝑧 ) ) |
7 |
6
|
eleq1d |
⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ( ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑧 ) ∈ 𝑤 ↔ ( 2nd ‘ 𝑧 ) ∈ 𝑤 ) ) |
8 |
|
1st2nd2 |
⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) |
9 |
|
xp1st |
⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ( 1st ‘ 𝑧 ) ∈ 𝑋 ) |
10 |
|
elxp6 |
⊢ ( 𝑧 ∈ ( 𝑋 × 𝑤 ) ↔ ( 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ∧ ( ( 1st ‘ 𝑧 ) ∈ 𝑋 ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑤 ) ) ) |
11 |
|
anass |
⊢ ( ( ( 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ∧ ( 1st ‘ 𝑧 ) ∈ 𝑋 ) ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑤 ) ↔ ( 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ∧ ( ( 1st ‘ 𝑧 ) ∈ 𝑋 ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑤 ) ) ) |
12 |
10 11
|
bitr4i |
⊢ ( 𝑧 ∈ ( 𝑋 × 𝑤 ) ↔ ( ( 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ∧ ( 1st ‘ 𝑧 ) ∈ 𝑋 ) ∧ ( 2nd ‘ 𝑧 ) ∈ 𝑤 ) ) |
13 |
12
|
baib |
⊢ ( ( 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ∧ ( 1st ‘ 𝑧 ) ∈ 𝑋 ) → ( 𝑧 ∈ ( 𝑋 × 𝑤 ) ↔ ( 2nd ‘ 𝑧 ) ∈ 𝑤 ) ) |
14 |
8 9 13
|
syl2anc |
⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ( 𝑧 ∈ ( 𝑋 × 𝑤 ) ↔ ( 2nd ‘ 𝑧 ) ∈ 𝑤 ) ) |
15 |
7 14
|
bitr4d |
⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ( ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑧 ) ∈ 𝑤 ↔ 𝑧 ∈ ( 𝑋 × 𝑤 ) ) ) |
16 |
15
|
pm5.32i |
⊢ ( ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ∧ ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑧 ) ∈ 𝑤 ) ↔ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑧 ∈ ( 𝑋 × 𝑤 ) ) ) |
17 |
5 16
|
bitri |
⊢ ( 𝑧 ∈ ( ◡ ( 2nd ↾ ( 𝑋 × 𝑌 ) ) “ 𝑤 ) ↔ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑧 ∈ ( 𝑋 × 𝑤 ) ) ) |
18 |
|
toponss |
⊢ ( ( 𝑆 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑤 ∈ 𝑆 ) → 𝑤 ⊆ 𝑌 ) |
19 |
18
|
adantll |
⊢ ( ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑤 ∈ 𝑆 ) → 𝑤 ⊆ 𝑌 ) |
20 |
|
xpss2 |
⊢ ( 𝑤 ⊆ 𝑌 → ( 𝑋 × 𝑤 ) ⊆ ( 𝑋 × 𝑌 ) ) |
21 |
19 20
|
syl |
⊢ ( ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝑋 × 𝑤 ) ⊆ ( 𝑋 × 𝑌 ) ) |
22 |
21
|
sseld |
⊢ ( ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝑧 ∈ ( 𝑋 × 𝑤 ) → 𝑧 ∈ ( 𝑋 × 𝑌 ) ) ) |
23 |
22
|
pm4.71rd |
⊢ ( ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝑧 ∈ ( 𝑋 × 𝑤 ) ↔ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑧 ∈ ( 𝑋 × 𝑤 ) ) ) ) |
24 |
17 23
|
bitr4id |
⊢ ( ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝑧 ∈ ( ◡ ( 2nd ↾ ( 𝑋 × 𝑌 ) ) “ 𝑤 ) ↔ 𝑧 ∈ ( 𝑋 × 𝑤 ) ) ) |
25 |
24
|
eqrdv |
⊢ ( ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑤 ∈ 𝑆 ) → ( ◡ ( 2nd ↾ ( 𝑋 × 𝑌 ) ) “ 𝑤 ) = ( 𝑋 × 𝑤 ) ) |
26 |
|
toponmax |
⊢ ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝑅 ) |
27 |
|
txopn |
⊢ ( ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝑋 ∈ 𝑅 ∧ 𝑤 ∈ 𝑆 ) ) → ( 𝑋 × 𝑤 ) ∈ ( 𝑅 ×t 𝑆 ) ) |
28 |
27
|
expr |
⊢ ( ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑋 ∈ 𝑅 ) → ( 𝑤 ∈ 𝑆 → ( 𝑋 × 𝑤 ) ∈ ( 𝑅 ×t 𝑆 ) ) ) |
29 |
26 28
|
mpidan |
⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝑤 ∈ 𝑆 → ( 𝑋 × 𝑤 ) ∈ ( 𝑅 ×t 𝑆 ) ) ) |
30 |
29
|
imp |
⊢ ( ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝑋 × 𝑤 ) ∈ ( 𝑅 ×t 𝑆 ) ) |
31 |
25 30
|
eqeltrd |
⊢ ( ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑤 ∈ 𝑆 ) → ( ◡ ( 2nd ↾ ( 𝑋 × 𝑌 ) ) “ 𝑤 ) ∈ ( 𝑅 ×t 𝑆 ) ) |
32 |
31
|
ralrimiva |
⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ∀ 𝑤 ∈ 𝑆 ( ◡ ( 2nd ↾ ( 𝑋 × 𝑌 ) ) “ 𝑤 ) ∈ ( 𝑅 ×t 𝑆 ) ) |
33 |
|
txtopon |
⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝑅 ×t 𝑆 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
34 |
|
iscn |
⊢ ( ( ( 𝑅 ×t 𝑆 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑆 ) ↔ ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ∧ ∀ 𝑤 ∈ 𝑆 ( ◡ ( 2nd ↾ ( 𝑋 × 𝑌 ) ) “ 𝑤 ) ∈ ( 𝑅 ×t 𝑆 ) ) ) ) |
35 |
33 34
|
sylancom |
⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑆 ) ↔ ( ( 2nd ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ∧ ∀ 𝑤 ∈ 𝑆 ( ◡ ( 2nd ↾ ( 𝑋 × 𝑌 ) ) “ 𝑤 ) ∈ ( 𝑅 ×t 𝑆 ) ) ) ) |
36 |
2 32 35
|
mpbir2and |
⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆 ∈ ( TopOn ‘ 𝑌 ) ) → ( 2nd ↾ ( 𝑋 × 𝑌 ) ) ∈ ( ( 𝑅 ×t 𝑆 ) Cn 𝑆 ) ) |