Step |
Hyp |
Ref |
Expression |
1 |
|
is2ndc |
⊢ ( 𝑅 ∈ 2ndω ↔ ∃ 𝑟 ∈ TopBases ( 𝑟 ≼ ω ∧ ( topGen ‘ 𝑟 ) = 𝑅 ) ) |
2 |
|
is2ndc |
⊢ ( 𝑆 ∈ 2ndω ↔ ∃ 𝑠 ∈ TopBases ( 𝑠 ≼ ω ∧ ( topGen ‘ 𝑠 ) = 𝑆 ) ) |
3 |
|
reeanv |
⊢ ( ∃ 𝑟 ∈ TopBases ∃ 𝑠 ∈ TopBases ( ( 𝑟 ≼ ω ∧ ( topGen ‘ 𝑟 ) = 𝑅 ) ∧ ( 𝑠 ≼ ω ∧ ( topGen ‘ 𝑠 ) = 𝑆 ) ) ↔ ( ∃ 𝑟 ∈ TopBases ( 𝑟 ≼ ω ∧ ( topGen ‘ 𝑟 ) = 𝑅 ) ∧ ∃ 𝑠 ∈ TopBases ( 𝑠 ≼ ω ∧ ( topGen ‘ 𝑠 ) = 𝑆 ) ) ) |
4 |
|
an4 |
⊢ ( ( ( 𝑟 ≼ ω ∧ ( topGen ‘ 𝑟 ) = 𝑅 ) ∧ ( 𝑠 ≼ ω ∧ ( topGen ‘ 𝑠 ) = 𝑆 ) ) ↔ ( ( 𝑟 ≼ ω ∧ 𝑠 ≼ ω ) ∧ ( ( topGen ‘ 𝑟 ) = 𝑅 ∧ ( topGen ‘ 𝑠 ) = 𝑆 ) ) ) |
5 |
|
txbasval |
⊢ ( ( 𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases ) → ( ( topGen ‘ 𝑟 ) ×t ( topGen ‘ 𝑠 ) ) = ( 𝑟 ×t 𝑠 ) ) |
6 |
|
eqid |
⊢ ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) = ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) |
7 |
6
|
txval |
⊢ ( ( 𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases ) → ( 𝑟 ×t 𝑠 ) = ( topGen ‘ ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) ) ) |
8 |
5 7
|
eqtrd |
⊢ ( ( 𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases ) → ( ( topGen ‘ 𝑟 ) ×t ( topGen ‘ 𝑠 ) ) = ( topGen ‘ ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) ) ) |
9 |
8
|
adantr |
⊢ ( ( ( 𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases ) ∧ ( 𝑟 ≼ ω ∧ 𝑠 ≼ ω ) ) → ( ( topGen ‘ 𝑟 ) ×t ( topGen ‘ 𝑠 ) ) = ( topGen ‘ ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) ) ) |
10 |
6
|
txbas |
⊢ ( ( 𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases ) → ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) ∈ TopBases ) |
11 |
10
|
adantr |
⊢ ( ( ( 𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases ) ∧ ( 𝑟 ≼ ω ∧ 𝑠 ≼ ω ) ) → ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) ∈ TopBases ) |
12 |
|
omelon |
⊢ ω ∈ On |
13 |
|
vex |
⊢ 𝑠 ∈ V |
14 |
13
|
xpdom1 |
⊢ ( 𝑟 ≼ ω → ( 𝑟 × 𝑠 ) ≼ ( ω × 𝑠 ) ) |
15 |
|
omex |
⊢ ω ∈ V |
16 |
15
|
xpdom2 |
⊢ ( 𝑠 ≼ ω → ( ω × 𝑠 ) ≼ ( ω × ω ) ) |
17 |
|
domtr |
⊢ ( ( ( 𝑟 × 𝑠 ) ≼ ( ω × 𝑠 ) ∧ ( ω × 𝑠 ) ≼ ( ω × ω ) ) → ( 𝑟 × 𝑠 ) ≼ ( ω × ω ) ) |
18 |
14 16 17
|
syl2an |
⊢ ( ( 𝑟 ≼ ω ∧ 𝑠 ≼ ω ) → ( 𝑟 × 𝑠 ) ≼ ( ω × ω ) ) |
19 |
18
|
adantl |
⊢ ( ( ( 𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases ) ∧ ( 𝑟 ≼ ω ∧ 𝑠 ≼ ω ) ) → ( 𝑟 × 𝑠 ) ≼ ( ω × ω ) ) |
20 |
|
xpomen |
⊢ ( ω × ω ) ≈ ω |
21 |
|
domentr |
⊢ ( ( ( 𝑟 × 𝑠 ) ≼ ( ω × ω ) ∧ ( ω × ω ) ≈ ω ) → ( 𝑟 × 𝑠 ) ≼ ω ) |
22 |
19 20 21
|
sylancl |
⊢ ( ( ( 𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases ) ∧ ( 𝑟 ≼ ω ∧ 𝑠 ≼ ω ) ) → ( 𝑟 × 𝑠 ) ≼ ω ) |
23 |
|
ondomen |
⊢ ( ( ω ∈ On ∧ ( 𝑟 × 𝑠 ) ≼ ω ) → ( 𝑟 × 𝑠 ) ∈ dom card ) |
24 |
12 22 23
|
sylancr |
⊢ ( ( ( 𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases ) ∧ ( 𝑟 ≼ ω ∧ 𝑠 ≼ ω ) ) → ( 𝑟 × 𝑠 ) ∈ dom card ) |
25 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) = ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) |
26 |
|
vex |
⊢ 𝑥 ∈ V |
27 |
|
vex |
⊢ 𝑦 ∈ V |
28 |
26 27
|
xpex |
⊢ ( 𝑥 × 𝑦 ) ∈ V |
29 |
25 28
|
fnmpoi |
⊢ ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) Fn ( 𝑟 × 𝑠 ) |
30 |
29
|
a1i |
⊢ ( ( ( 𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases ) ∧ ( 𝑟 ≼ ω ∧ 𝑠 ≼ ω ) ) → ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) Fn ( 𝑟 × 𝑠 ) ) |
31 |
|
dffn4 |
⊢ ( ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) Fn ( 𝑟 × 𝑠 ) ↔ ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) : ( 𝑟 × 𝑠 ) –onto→ ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) ) |
32 |
30 31
|
sylib |
⊢ ( ( ( 𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases ) ∧ ( 𝑟 ≼ ω ∧ 𝑠 ≼ ω ) ) → ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) : ( 𝑟 × 𝑠 ) –onto→ ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) ) |
33 |
|
fodomnum |
⊢ ( ( 𝑟 × 𝑠 ) ∈ dom card → ( ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) : ( 𝑟 × 𝑠 ) –onto→ ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) → ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) ≼ ( 𝑟 × 𝑠 ) ) ) |
34 |
24 32 33
|
sylc |
⊢ ( ( ( 𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases ) ∧ ( 𝑟 ≼ ω ∧ 𝑠 ≼ ω ) ) → ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) ≼ ( 𝑟 × 𝑠 ) ) |
35 |
|
domtr |
⊢ ( ( ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) ≼ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ≼ ω ) → ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) ≼ ω ) |
36 |
34 22 35
|
syl2anc |
⊢ ( ( ( 𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases ) ∧ ( 𝑟 ≼ ω ∧ 𝑠 ≼ ω ) ) → ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) ≼ ω ) |
37 |
|
2ndci |
⊢ ( ( ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) ∈ TopBases ∧ ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) ≼ ω ) → ( topGen ‘ ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) ) ∈ 2ndω ) |
38 |
11 36 37
|
syl2anc |
⊢ ( ( ( 𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases ) ∧ ( 𝑟 ≼ ω ∧ 𝑠 ≼ ω ) ) → ( topGen ‘ ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) ) ∈ 2ndω ) |
39 |
9 38
|
eqeltrd |
⊢ ( ( ( 𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases ) ∧ ( 𝑟 ≼ ω ∧ 𝑠 ≼ ω ) ) → ( ( topGen ‘ 𝑟 ) ×t ( topGen ‘ 𝑠 ) ) ∈ 2ndω ) |
40 |
|
oveq12 |
⊢ ( ( ( topGen ‘ 𝑟 ) = 𝑅 ∧ ( topGen ‘ 𝑠 ) = 𝑆 ) → ( ( topGen ‘ 𝑟 ) ×t ( topGen ‘ 𝑠 ) ) = ( 𝑅 ×t 𝑆 ) ) |
41 |
40
|
eleq1d |
⊢ ( ( ( topGen ‘ 𝑟 ) = 𝑅 ∧ ( topGen ‘ 𝑠 ) = 𝑆 ) → ( ( ( topGen ‘ 𝑟 ) ×t ( topGen ‘ 𝑠 ) ) ∈ 2ndω ↔ ( 𝑅 ×t 𝑆 ) ∈ 2ndω ) ) |
42 |
39 41
|
syl5ibcom |
⊢ ( ( ( 𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases ) ∧ ( 𝑟 ≼ ω ∧ 𝑠 ≼ ω ) ) → ( ( ( topGen ‘ 𝑟 ) = 𝑅 ∧ ( topGen ‘ 𝑠 ) = 𝑆 ) → ( 𝑅 ×t 𝑆 ) ∈ 2ndω ) ) |
43 |
42
|
expimpd |
⊢ ( ( 𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases ) → ( ( ( 𝑟 ≼ ω ∧ 𝑠 ≼ ω ) ∧ ( ( topGen ‘ 𝑟 ) = 𝑅 ∧ ( topGen ‘ 𝑠 ) = 𝑆 ) ) → ( 𝑅 ×t 𝑆 ) ∈ 2ndω ) ) |
44 |
4 43
|
syl5bi |
⊢ ( ( 𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases ) → ( ( ( 𝑟 ≼ ω ∧ ( topGen ‘ 𝑟 ) = 𝑅 ) ∧ ( 𝑠 ≼ ω ∧ ( topGen ‘ 𝑠 ) = 𝑆 ) ) → ( 𝑅 ×t 𝑆 ) ∈ 2ndω ) ) |
45 |
44
|
rexlimivv |
⊢ ( ∃ 𝑟 ∈ TopBases ∃ 𝑠 ∈ TopBases ( ( 𝑟 ≼ ω ∧ ( topGen ‘ 𝑟 ) = 𝑅 ) ∧ ( 𝑠 ≼ ω ∧ ( topGen ‘ 𝑠 ) = 𝑆 ) ) → ( 𝑅 ×t 𝑆 ) ∈ 2ndω ) |
46 |
3 45
|
sylbir |
⊢ ( ( ∃ 𝑟 ∈ TopBases ( 𝑟 ≼ ω ∧ ( topGen ‘ 𝑟 ) = 𝑅 ) ∧ ∃ 𝑠 ∈ TopBases ( 𝑠 ≼ ω ∧ ( topGen ‘ 𝑠 ) = 𝑆 ) ) → ( 𝑅 ×t 𝑆 ) ∈ 2ndω ) |
47 |
1 2 46
|
syl2anb |
⊢ ( ( 𝑅 ∈ 2ndω ∧ 𝑆 ∈ 2ndω ) → ( 𝑅 ×t 𝑆 ) ∈ 2ndω ) |