| Step | Hyp | Ref | Expression | 
						
							| 1 |  | txval.1 | ⊢ 𝐵  =  ran  ( 𝑥  ∈  𝑅 ,  𝑦  ∈  𝑆  ↦  ( 𝑥  ×  𝑦 ) ) | 
						
							| 2 |  | xpeq1 | ⊢ ( 𝑥  =  𝑎  →  ( 𝑥  ×  𝑦 )  =  ( 𝑎  ×  𝑦 ) ) | 
						
							| 3 |  | xpeq2 | ⊢ ( 𝑦  =  𝑏  →  ( 𝑎  ×  𝑦 )  =  ( 𝑎  ×  𝑏 ) ) | 
						
							| 4 | 2 3 | cbvmpov | ⊢ ( 𝑥  ∈  𝑅 ,  𝑦  ∈  𝑆  ↦  ( 𝑥  ×  𝑦 ) )  =  ( 𝑎  ∈  𝑅 ,  𝑏  ∈  𝑆  ↦  ( 𝑎  ×  𝑏 ) ) | 
						
							| 5 | 4 | rnmpo | ⊢ ran  ( 𝑥  ∈  𝑅 ,  𝑦  ∈  𝑆  ↦  ( 𝑥  ×  𝑦 ) )  =  { 𝑢  ∣  ∃ 𝑎  ∈  𝑅 ∃ 𝑏  ∈  𝑆 𝑢  =  ( 𝑎  ×  𝑏 ) } | 
						
							| 6 | 1 5 | eqtri | ⊢ 𝐵  =  { 𝑢  ∣  ∃ 𝑎  ∈  𝑅 ∃ 𝑏  ∈  𝑆 𝑢  =  ( 𝑎  ×  𝑏 ) } | 
						
							| 7 | 6 | eqabri | ⊢ ( 𝑢  ∈  𝐵  ↔  ∃ 𝑎  ∈  𝑅 ∃ 𝑏  ∈  𝑆 𝑢  =  ( 𝑎  ×  𝑏 ) ) | 
						
							| 8 |  | xpeq1 | ⊢ ( 𝑥  =  𝑐  →  ( 𝑥  ×  𝑦 )  =  ( 𝑐  ×  𝑦 ) ) | 
						
							| 9 |  | xpeq2 | ⊢ ( 𝑦  =  𝑑  →  ( 𝑐  ×  𝑦 )  =  ( 𝑐  ×  𝑑 ) ) | 
						
							| 10 | 8 9 | cbvmpov | ⊢ ( 𝑥  ∈  𝑅 ,  𝑦  ∈  𝑆  ↦  ( 𝑥  ×  𝑦 ) )  =  ( 𝑐  ∈  𝑅 ,  𝑑  ∈  𝑆  ↦  ( 𝑐  ×  𝑑 ) ) | 
						
							| 11 | 10 | rnmpo | ⊢ ran  ( 𝑥  ∈  𝑅 ,  𝑦  ∈  𝑆  ↦  ( 𝑥  ×  𝑦 ) )  =  { 𝑣  ∣  ∃ 𝑐  ∈  𝑅 ∃ 𝑑  ∈  𝑆 𝑣  =  ( 𝑐  ×  𝑑 ) } | 
						
							| 12 | 1 11 | eqtri | ⊢ 𝐵  =  { 𝑣  ∣  ∃ 𝑐  ∈  𝑅 ∃ 𝑑  ∈  𝑆 𝑣  =  ( 𝑐  ×  𝑑 ) } | 
						
							| 13 | 12 | eqabri | ⊢ ( 𝑣  ∈  𝐵  ↔  ∃ 𝑐  ∈  𝑅 ∃ 𝑑  ∈  𝑆 𝑣  =  ( 𝑐  ×  𝑑 ) ) | 
						
							| 14 | 7 13 | anbi12i | ⊢ ( ( 𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵 )  ↔  ( ∃ 𝑎  ∈  𝑅 ∃ 𝑏  ∈  𝑆 𝑢  =  ( 𝑎  ×  𝑏 )  ∧  ∃ 𝑐  ∈  𝑅 ∃ 𝑑  ∈  𝑆 𝑣  =  ( 𝑐  ×  𝑑 ) ) ) | 
						
							| 15 |  | reeanv | ⊢ ( ∃ 𝑎  ∈  𝑅 ∃ 𝑐  ∈  𝑅 ( ∃ 𝑏  ∈  𝑆 𝑢  =  ( 𝑎  ×  𝑏 )  ∧  ∃ 𝑑  ∈  𝑆 𝑣  =  ( 𝑐  ×  𝑑 ) )  ↔  ( ∃ 𝑎  ∈  𝑅 ∃ 𝑏  ∈  𝑆 𝑢  =  ( 𝑎  ×  𝑏 )  ∧  ∃ 𝑐  ∈  𝑅 ∃ 𝑑  ∈  𝑆 𝑣  =  ( 𝑐  ×  𝑑 ) ) ) | 
						
							| 16 | 14 15 | bitr4i | ⊢ ( ( 𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵 )  ↔  ∃ 𝑎  ∈  𝑅 ∃ 𝑐  ∈  𝑅 ( ∃ 𝑏  ∈  𝑆 𝑢  =  ( 𝑎  ×  𝑏 )  ∧  ∃ 𝑑  ∈  𝑆 𝑣  =  ( 𝑐  ×  𝑑 ) ) ) | 
						
							| 17 |  | reeanv | ⊢ ( ∃ 𝑏  ∈  𝑆 ∃ 𝑑  ∈  𝑆 ( 𝑢  =  ( 𝑎  ×  𝑏 )  ∧  𝑣  =  ( 𝑐  ×  𝑑 ) )  ↔  ( ∃ 𝑏  ∈  𝑆 𝑢  =  ( 𝑎  ×  𝑏 )  ∧  ∃ 𝑑  ∈  𝑆 𝑣  =  ( 𝑐  ×  𝑑 ) ) ) | 
						
							| 18 |  | basis2 | ⊢ ( ( ( 𝑅  ∈  TopBases  ∧  𝑎  ∈  𝑅 )  ∧  ( 𝑐  ∈  𝑅  ∧  𝑢  ∈  ( 𝑎  ∩  𝑐 ) ) )  →  ∃ 𝑥  ∈  𝑅 ( 𝑢  ∈  𝑥  ∧  𝑥  ⊆  ( 𝑎  ∩  𝑐 ) ) ) | 
						
							| 19 | 18 | exp43 | ⊢ ( 𝑅  ∈  TopBases  →  ( 𝑎  ∈  𝑅  →  ( 𝑐  ∈  𝑅  →  ( 𝑢  ∈  ( 𝑎  ∩  𝑐 )  →  ∃ 𝑥  ∈  𝑅 ( 𝑢  ∈  𝑥  ∧  𝑥  ⊆  ( 𝑎  ∩  𝑐 ) ) ) ) ) ) | 
						
							| 20 | 19 | imp42 | ⊢ ( ( ( 𝑅  ∈  TopBases  ∧  ( 𝑎  ∈  𝑅  ∧  𝑐  ∈  𝑅 ) )  ∧  𝑢  ∈  ( 𝑎  ∩  𝑐 ) )  →  ∃ 𝑥  ∈  𝑅 ( 𝑢  ∈  𝑥  ∧  𝑥  ⊆  ( 𝑎  ∩  𝑐 ) ) ) | 
						
							| 21 |  | basis2 | ⊢ ( ( ( 𝑆  ∈  TopBases  ∧  𝑏  ∈  𝑆 )  ∧  ( 𝑑  ∈  𝑆  ∧  𝑣  ∈  ( 𝑏  ∩  𝑑 ) ) )  →  ∃ 𝑦  ∈  𝑆 ( 𝑣  ∈  𝑦  ∧  𝑦  ⊆  ( 𝑏  ∩  𝑑 ) ) ) | 
						
							| 22 | 21 | exp43 | ⊢ ( 𝑆  ∈  TopBases  →  ( 𝑏  ∈  𝑆  →  ( 𝑑  ∈  𝑆  →  ( 𝑣  ∈  ( 𝑏  ∩  𝑑 )  →  ∃ 𝑦  ∈  𝑆 ( 𝑣  ∈  𝑦  ∧  𝑦  ⊆  ( 𝑏  ∩  𝑑 ) ) ) ) ) ) | 
						
							| 23 | 22 | imp42 | ⊢ ( ( ( 𝑆  ∈  TopBases  ∧  ( 𝑏  ∈  𝑆  ∧  𝑑  ∈  𝑆 ) )  ∧  𝑣  ∈  ( 𝑏  ∩  𝑑 ) )  →  ∃ 𝑦  ∈  𝑆 ( 𝑣  ∈  𝑦  ∧  𝑦  ⊆  ( 𝑏  ∩  𝑑 ) ) ) | 
						
							| 24 |  | reeanv | ⊢ ( ∃ 𝑥  ∈  𝑅 ∃ 𝑦  ∈  𝑆 ( ( 𝑢  ∈  𝑥  ∧  𝑥  ⊆  ( 𝑎  ∩  𝑐 ) )  ∧  ( 𝑣  ∈  𝑦  ∧  𝑦  ⊆  ( 𝑏  ∩  𝑑 ) ) )  ↔  ( ∃ 𝑥  ∈  𝑅 ( 𝑢  ∈  𝑥  ∧  𝑥  ⊆  ( 𝑎  ∩  𝑐 ) )  ∧  ∃ 𝑦  ∈  𝑆 ( 𝑣  ∈  𝑦  ∧  𝑦  ⊆  ( 𝑏  ∩  𝑑 ) ) ) ) | 
						
							| 25 |  | opelxpi | ⊢ ( ( 𝑢  ∈  𝑥  ∧  𝑣  ∈  𝑦 )  →  〈 𝑢 ,  𝑣 〉  ∈  ( 𝑥  ×  𝑦 ) ) | 
						
							| 26 |  | xpss12 | ⊢ ( ( 𝑥  ⊆  ( 𝑎  ∩  𝑐 )  ∧  𝑦  ⊆  ( 𝑏  ∩  𝑑 ) )  →  ( 𝑥  ×  𝑦 )  ⊆  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) ) | 
						
							| 27 | 25 26 | anim12i | ⊢ ( ( ( 𝑢  ∈  𝑥  ∧  𝑣  ∈  𝑦 )  ∧  ( 𝑥  ⊆  ( 𝑎  ∩  𝑐 )  ∧  𝑦  ⊆  ( 𝑏  ∩  𝑑 ) ) )  →  ( 〈 𝑢 ,  𝑣 〉  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) ) ) | 
						
							| 28 | 27 | an4s | ⊢ ( ( ( 𝑢  ∈  𝑥  ∧  𝑥  ⊆  ( 𝑎  ∩  𝑐 ) )  ∧  ( 𝑣  ∈  𝑦  ∧  𝑦  ⊆  ( 𝑏  ∩  𝑑 ) ) )  →  ( 〈 𝑢 ,  𝑣 〉  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) ) ) | 
						
							| 29 | 28 | reximi | ⊢ ( ∃ 𝑦  ∈  𝑆 ( ( 𝑢  ∈  𝑥  ∧  𝑥  ⊆  ( 𝑎  ∩  𝑐 ) )  ∧  ( 𝑣  ∈  𝑦  ∧  𝑦  ⊆  ( 𝑏  ∩  𝑑 ) ) )  →  ∃ 𝑦  ∈  𝑆 ( 〈 𝑢 ,  𝑣 〉  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) ) ) | 
						
							| 30 | 29 | reximi | ⊢ ( ∃ 𝑥  ∈  𝑅 ∃ 𝑦  ∈  𝑆 ( ( 𝑢  ∈  𝑥  ∧  𝑥  ⊆  ( 𝑎  ∩  𝑐 ) )  ∧  ( 𝑣  ∈  𝑦  ∧  𝑦  ⊆  ( 𝑏  ∩  𝑑 ) ) )  →  ∃ 𝑥  ∈  𝑅 ∃ 𝑦  ∈  𝑆 ( 〈 𝑢 ,  𝑣 〉  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) ) ) | 
						
							| 31 | 24 30 | sylbir | ⊢ ( ( ∃ 𝑥  ∈  𝑅 ( 𝑢  ∈  𝑥  ∧  𝑥  ⊆  ( 𝑎  ∩  𝑐 ) )  ∧  ∃ 𝑦  ∈  𝑆 ( 𝑣  ∈  𝑦  ∧  𝑦  ⊆  ( 𝑏  ∩  𝑑 ) ) )  →  ∃ 𝑥  ∈  𝑅 ∃ 𝑦  ∈  𝑆 ( 〈 𝑢 ,  𝑣 〉  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) ) ) | 
						
							| 32 | 20 23 31 | syl2an | ⊢ ( ( ( ( 𝑅  ∈  TopBases  ∧  ( 𝑎  ∈  𝑅  ∧  𝑐  ∈  𝑅 ) )  ∧  𝑢  ∈  ( 𝑎  ∩  𝑐 ) )  ∧  ( ( 𝑆  ∈  TopBases  ∧  ( 𝑏  ∈  𝑆  ∧  𝑑  ∈  𝑆 ) )  ∧  𝑣  ∈  ( 𝑏  ∩  𝑑 ) ) )  →  ∃ 𝑥  ∈  𝑅 ∃ 𝑦  ∈  𝑆 ( 〈 𝑢 ,  𝑣 〉  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) ) ) | 
						
							| 33 | 32 | an4s | ⊢ ( ( ( ( 𝑅  ∈  TopBases  ∧  ( 𝑎  ∈  𝑅  ∧  𝑐  ∈  𝑅 ) )  ∧  ( 𝑆  ∈  TopBases  ∧  ( 𝑏  ∈  𝑆  ∧  𝑑  ∈  𝑆 ) ) )  ∧  ( 𝑢  ∈  ( 𝑎  ∩  𝑐 )  ∧  𝑣  ∈  ( 𝑏  ∩  𝑑 ) ) )  →  ∃ 𝑥  ∈  𝑅 ∃ 𝑦  ∈  𝑆 ( 〈 𝑢 ,  𝑣 〉  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) ) ) | 
						
							| 34 | 33 | ralrimivva | ⊢ ( ( ( 𝑅  ∈  TopBases  ∧  ( 𝑎  ∈  𝑅  ∧  𝑐  ∈  𝑅 ) )  ∧  ( 𝑆  ∈  TopBases  ∧  ( 𝑏  ∈  𝑆  ∧  𝑑  ∈  𝑆 ) ) )  →  ∀ 𝑢  ∈  ( 𝑎  ∩  𝑐 ) ∀ 𝑣  ∈  ( 𝑏  ∩  𝑑 ) ∃ 𝑥  ∈  𝑅 ∃ 𝑦  ∈  𝑆 ( 〈 𝑢 ,  𝑣 〉  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) ) ) | 
						
							| 35 |  | eleq1 | ⊢ ( 𝑝  =  〈 𝑢 ,  𝑣 〉  →  ( 𝑝  ∈  ( 𝑥  ×  𝑦 )  ↔  〈 𝑢 ,  𝑣 〉  ∈  ( 𝑥  ×  𝑦 ) ) ) | 
						
							| 36 | 35 | anbi1d | ⊢ ( 𝑝  =  〈 𝑢 ,  𝑣 〉  →  ( ( 𝑝  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) )  ↔  ( 〈 𝑢 ,  𝑣 〉  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) ) ) ) | 
						
							| 37 | 36 | 2rexbidv | ⊢ ( 𝑝  =  〈 𝑢 ,  𝑣 〉  →  ( ∃ 𝑥  ∈  𝑅 ∃ 𝑦  ∈  𝑆 ( 𝑝  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) )  ↔  ∃ 𝑥  ∈  𝑅 ∃ 𝑦  ∈  𝑆 ( 〈 𝑢 ,  𝑣 〉  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) ) ) ) | 
						
							| 38 | 37 | ralxp | ⊢ ( ∀ 𝑝  ∈  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) ∃ 𝑥  ∈  𝑅 ∃ 𝑦  ∈  𝑆 ( 𝑝  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) )  ↔  ∀ 𝑢  ∈  ( 𝑎  ∩  𝑐 ) ∀ 𝑣  ∈  ( 𝑏  ∩  𝑑 ) ∃ 𝑥  ∈  𝑅 ∃ 𝑦  ∈  𝑆 ( 〈 𝑢 ,  𝑣 〉  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) ) ) | 
						
							| 39 | 34 38 | sylibr | ⊢ ( ( ( 𝑅  ∈  TopBases  ∧  ( 𝑎  ∈  𝑅  ∧  𝑐  ∈  𝑅 ) )  ∧  ( 𝑆  ∈  TopBases  ∧  ( 𝑏  ∈  𝑆  ∧  𝑑  ∈  𝑆 ) ) )  →  ∀ 𝑝  ∈  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) ∃ 𝑥  ∈  𝑅 ∃ 𝑦  ∈  𝑆 ( 𝑝  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) ) ) | 
						
							| 40 | 39 | an4s | ⊢ ( ( ( 𝑅  ∈  TopBases  ∧  𝑆  ∈  TopBases )  ∧  ( ( 𝑎  ∈  𝑅  ∧  𝑐  ∈  𝑅 )  ∧  ( 𝑏  ∈  𝑆  ∧  𝑑  ∈  𝑆 ) ) )  →  ∀ 𝑝  ∈  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) ∃ 𝑥  ∈  𝑅 ∃ 𝑦  ∈  𝑆 ( 𝑝  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) ) ) | 
						
							| 41 | 40 | anassrs | ⊢ ( ( ( ( 𝑅  ∈  TopBases  ∧  𝑆  ∈  TopBases )  ∧  ( 𝑎  ∈  𝑅  ∧  𝑐  ∈  𝑅 ) )  ∧  ( 𝑏  ∈  𝑆  ∧  𝑑  ∈  𝑆 ) )  →  ∀ 𝑝  ∈  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) ∃ 𝑥  ∈  𝑅 ∃ 𝑦  ∈  𝑆 ( 𝑝  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) ) ) | 
						
							| 42 |  | ineq12 | ⊢ ( ( 𝑢  =  ( 𝑎  ×  𝑏 )  ∧  𝑣  =  ( 𝑐  ×  𝑑 ) )  →  ( 𝑢  ∩  𝑣 )  =  ( ( 𝑎  ×  𝑏 )  ∩  ( 𝑐  ×  𝑑 ) ) ) | 
						
							| 43 |  | inxp | ⊢ ( ( 𝑎  ×  𝑏 )  ∩  ( 𝑐  ×  𝑑 ) )  =  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) | 
						
							| 44 | 42 43 | eqtrdi | ⊢ ( ( 𝑢  =  ( 𝑎  ×  𝑏 )  ∧  𝑣  =  ( 𝑐  ×  𝑑 ) )  →  ( 𝑢  ∩  𝑣 )  =  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) ) | 
						
							| 45 | 44 | sseq2d | ⊢ ( ( 𝑢  =  ( 𝑎  ×  𝑏 )  ∧  𝑣  =  ( 𝑐  ×  𝑑 ) )  →  ( 𝑡  ⊆  ( 𝑢  ∩  𝑣 )  ↔  𝑡  ⊆  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) ) ) | 
						
							| 46 | 45 | anbi2d | ⊢ ( ( 𝑢  =  ( 𝑎  ×  𝑏 )  ∧  𝑣  =  ( 𝑐  ×  𝑑 ) )  →  ( ( 𝑝  ∈  𝑡  ∧  𝑡  ⊆  ( 𝑢  ∩  𝑣 ) )  ↔  ( 𝑝  ∈  𝑡  ∧  𝑡  ⊆  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) ) ) ) | 
						
							| 47 | 46 | rexbidv | ⊢ ( ( 𝑢  =  ( 𝑎  ×  𝑏 )  ∧  𝑣  =  ( 𝑐  ×  𝑑 ) )  →  ( ∃ 𝑡  ∈  𝐵 ( 𝑝  ∈  𝑡  ∧  𝑡  ⊆  ( 𝑢  ∩  𝑣 ) )  ↔  ∃ 𝑡  ∈  𝐵 ( 𝑝  ∈  𝑡  ∧  𝑡  ⊆  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) ) ) ) | 
						
							| 48 | 1 | rexeqi | ⊢ ( ∃ 𝑡  ∈  𝐵 ( 𝑝  ∈  𝑡  ∧  𝑡  ⊆  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) )  ↔  ∃ 𝑡  ∈  ran  ( 𝑥  ∈  𝑅 ,  𝑦  ∈  𝑆  ↦  ( 𝑥  ×  𝑦 ) ) ( 𝑝  ∈  𝑡  ∧  𝑡  ⊆  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) ) ) | 
						
							| 49 |  | fvex | ⊢ ( 1st  ‘ 𝑧 )  ∈  V | 
						
							| 50 |  | fvex | ⊢ ( 2nd  ‘ 𝑧 )  ∈  V | 
						
							| 51 | 49 50 | xpex | ⊢ ( ( 1st  ‘ 𝑧 )  ×  ( 2nd  ‘ 𝑧 ) )  ∈  V | 
						
							| 52 | 51 | rgenw | ⊢ ∀ 𝑧  ∈  ( 𝑅  ×  𝑆 ) ( ( 1st  ‘ 𝑧 )  ×  ( 2nd  ‘ 𝑧 ) )  ∈  V | 
						
							| 53 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 54 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 55 | 53 54 | op1std | ⊢ ( 𝑧  =  〈 𝑥 ,  𝑦 〉  →  ( 1st  ‘ 𝑧 )  =  𝑥 ) | 
						
							| 56 | 53 54 | op2ndd | ⊢ ( 𝑧  =  〈 𝑥 ,  𝑦 〉  →  ( 2nd  ‘ 𝑧 )  =  𝑦 ) | 
						
							| 57 | 55 56 | xpeq12d | ⊢ ( 𝑧  =  〈 𝑥 ,  𝑦 〉  →  ( ( 1st  ‘ 𝑧 )  ×  ( 2nd  ‘ 𝑧 ) )  =  ( 𝑥  ×  𝑦 ) ) | 
						
							| 58 | 57 | mpompt | ⊢ ( 𝑧  ∈  ( 𝑅  ×  𝑆 )  ↦  ( ( 1st  ‘ 𝑧 )  ×  ( 2nd  ‘ 𝑧 ) ) )  =  ( 𝑥  ∈  𝑅 ,  𝑦  ∈  𝑆  ↦  ( 𝑥  ×  𝑦 ) ) | 
						
							| 59 | 58 | eqcomi | ⊢ ( 𝑥  ∈  𝑅 ,  𝑦  ∈  𝑆  ↦  ( 𝑥  ×  𝑦 ) )  =  ( 𝑧  ∈  ( 𝑅  ×  𝑆 )  ↦  ( ( 1st  ‘ 𝑧 )  ×  ( 2nd  ‘ 𝑧 ) ) ) | 
						
							| 60 |  | eleq2 | ⊢ ( 𝑡  =  ( ( 1st  ‘ 𝑧 )  ×  ( 2nd  ‘ 𝑧 ) )  →  ( 𝑝  ∈  𝑡  ↔  𝑝  ∈  ( ( 1st  ‘ 𝑧 )  ×  ( 2nd  ‘ 𝑧 ) ) ) ) | 
						
							| 61 |  | sseq1 | ⊢ ( 𝑡  =  ( ( 1st  ‘ 𝑧 )  ×  ( 2nd  ‘ 𝑧 ) )  →  ( 𝑡  ⊆  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) )  ↔  ( ( 1st  ‘ 𝑧 )  ×  ( 2nd  ‘ 𝑧 ) )  ⊆  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) ) ) | 
						
							| 62 | 60 61 | anbi12d | ⊢ ( 𝑡  =  ( ( 1st  ‘ 𝑧 )  ×  ( 2nd  ‘ 𝑧 ) )  →  ( ( 𝑝  ∈  𝑡  ∧  𝑡  ⊆  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) )  ↔  ( 𝑝  ∈  ( ( 1st  ‘ 𝑧 )  ×  ( 2nd  ‘ 𝑧 ) )  ∧  ( ( 1st  ‘ 𝑧 )  ×  ( 2nd  ‘ 𝑧 ) )  ⊆  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) ) ) ) | 
						
							| 63 | 59 62 | rexrnmptw | ⊢ ( ∀ 𝑧  ∈  ( 𝑅  ×  𝑆 ) ( ( 1st  ‘ 𝑧 )  ×  ( 2nd  ‘ 𝑧 ) )  ∈  V  →  ( ∃ 𝑡  ∈  ran  ( 𝑥  ∈  𝑅 ,  𝑦  ∈  𝑆  ↦  ( 𝑥  ×  𝑦 ) ) ( 𝑝  ∈  𝑡  ∧  𝑡  ⊆  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) )  ↔  ∃ 𝑧  ∈  ( 𝑅  ×  𝑆 ) ( 𝑝  ∈  ( ( 1st  ‘ 𝑧 )  ×  ( 2nd  ‘ 𝑧 ) )  ∧  ( ( 1st  ‘ 𝑧 )  ×  ( 2nd  ‘ 𝑧 ) )  ⊆  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) ) ) ) | 
						
							| 64 | 52 63 | ax-mp | ⊢ ( ∃ 𝑡  ∈  ran  ( 𝑥  ∈  𝑅 ,  𝑦  ∈  𝑆  ↦  ( 𝑥  ×  𝑦 ) ) ( 𝑝  ∈  𝑡  ∧  𝑡  ⊆  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) )  ↔  ∃ 𝑧  ∈  ( 𝑅  ×  𝑆 ) ( 𝑝  ∈  ( ( 1st  ‘ 𝑧 )  ×  ( 2nd  ‘ 𝑧 ) )  ∧  ( ( 1st  ‘ 𝑧 )  ×  ( 2nd  ‘ 𝑧 ) )  ⊆  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) ) ) | 
						
							| 65 | 57 | eleq2d | ⊢ ( 𝑧  =  〈 𝑥 ,  𝑦 〉  →  ( 𝑝  ∈  ( ( 1st  ‘ 𝑧 )  ×  ( 2nd  ‘ 𝑧 ) )  ↔  𝑝  ∈  ( 𝑥  ×  𝑦 ) ) ) | 
						
							| 66 | 57 | sseq1d | ⊢ ( 𝑧  =  〈 𝑥 ,  𝑦 〉  →  ( ( ( 1st  ‘ 𝑧 )  ×  ( 2nd  ‘ 𝑧 ) )  ⊆  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) )  ↔  ( 𝑥  ×  𝑦 )  ⊆  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) ) ) | 
						
							| 67 | 65 66 | anbi12d | ⊢ ( 𝑧  =  〈 𝑥 ,  𝑦 〉  →  ( ( 𝑝  ∈  ( ( 1st  ‘ 𝑧 )  ×  ( 2nd  ‘ 𝑧 ) )  ∧  ( ( 1st  ‘ 𝑧 )  ×  ( 2nd  ‘ 𝑧 ) )  ⊆  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) )  ↔  ( 𝑝  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) ) ) ) | 
						
							| 68 | 67 | rexxp | ⊢ ( ∃ 𝑧  ∈  ( 𝑅  ×  𝑆 ) ( 𝑝  ∈  ( ( 1st  ‘ 𝑧 )  ×  ( 2nd  ‘ 𝑧 ) )  ∧  ( ( 1st  ‘ 𝑧 )  ×  ( 2nd  ‘ 𝑧 ) )  ⊆  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) )  ↔  ∃ 𝑥  ∈  𝑅 ∃ 𝑦  ∈  𝑆 ( 𝑝  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) ) ) | 
						
							| 69 | 48 64 68 | 3bitri | ⊢ ( ∃ 𝑡  ∈  𝐵 ( 𝑝  ∈  𝑡  ∧  𝑡  ⊆  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) )  ↔  ∃ 𝑥  ∈  𝑅 ∃ 𝑦  ∈  𝑆 ( 𝑝  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) ) ) | 
						
							| 70 | 47 69 | bitrdi | ⊢ ( ( 𝑢  =  ( 𝑎  ×  𝑏 )  ∧  𝑣  =  ( 𝑐  ×  𝑑 ) )  →  ( ∃ 𝑡  ∈  𝐵 ( 𝑝  ∈  𝑡  ∧  𝑡  ⊆  ( 𝑢  ∩  𝑣 ) )  ↔  ∃ 𝑥  ∈  𝑅 ∃ 𝑦  ∈  𝑆 ( 𝑝  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) ) ) ) | 
						
							| 71 | 44 70 | raleqbidv | ⊢ ( ( 𝑢  =  ( 𝑎  ×  𝑏 )  ∧  𝑣  =  ( 𝑐  ×  𝑑 ) )  →  ( ∀ 𝑝  ∈  ( 𝑢  ∩  𝑣 ) ∃ 𝑡  ∈  𝐵 ( 𝑝  ∈  𝑡  ∧  𝑡  ⊆  ( 𝑢  ∩  𝑣 ) )  ↔  ∀ 𝑝  ∈  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) ∃ 𝑥  ∈  𝑅 ∃ 𝑦  ∈  𝑆 ( 𝑝  ∈  ( 𝑥  ×  𝑦 )  ∧  ( 𝑥  ×  𝑦 )  ⊆  ( ( 𝑎  ∩  𝑐 )  ×  ( 𝑏  ∩  𝑑 ) ) ) ) ) | 
						
							| 72 | 41 71 | syl5ibrcom | ⊢ ( ( ( ( 𝑅  ∈  TopBases  ∧  𝑆  ∈  TopBases )  ∧  ( 𝑎  ∈  𝑅  ∧  𝑐  ∈  𝑅 ) )  ∧  ( 𝑏  ∈  𝑆  ∧  𝑑  ∈  𝑆 ) )  →  ( ( 𝑢  =  ( 𝑎  ×  𝑏 )  ∧  𝑣  =  ( 𝑐  ×  𝑑 ) )  →  ∀ 𝑝  ∈  ( 𝑢  ∩  𝑣 ) ∃ 𝑡  ∈  𝐵 ( 𝑝  ∈  𝑡  ∧  𝑡  ⊆  ( 𝑢  ∩  𝑣 ) ) ) ) | 
						
							| 73 | 72 | rexlimdvva | ⊢ ( ( ( 𝑅  ∈  TopBases  ∧  𝑆  ∈  TopBases )  ∧  ( 𝑎  ∈  𝑅  ∧  𝑐  ∈  𝑅 ) )  →  ( ∃ 𝑏  ∈  𝑆 ∃ 𝑑  ∈  𝑆 ( 𝑢  =  ( 𝑎  ×  𝑏 )  ∧  𝑣  =  ( 𝑐  ×  𝑑 ) )  →  ∀ 𝑝  ∈  ( 𝑢  ∩  𝑣 ) ∃ 𝑡  ∈  𝐵 ( 𝑝  ∈  𝑡  ∧  𝑡  ⊆  ( 𝑢  ∩  𝑣 ) ) ) ) | 
						
							| 74 | 17 73 | biimtrrid | ⊢ ( ( ( 𝑅  ∈  TopBases  ∧  𝑆  ∈  TopBases )  ∧  ( 𝑎  ∈  𝑅  ∧  𝑐  ∈  𝑅 ) )  →  ( ( ∃ 𝑏  ∈  𝑆 𝑢  =  ( 𝑎  ×  𝑏 )  ∧  ∃ 𝑑  ∈  𝑆 𝑣  =  ( 𝑐  ×  𝑑 ) )  →  ∀ 𝑝  ∈  ( 𝑢  ∩  𝑣 ) ∃ 𝑡  ∈  𝐵 ( 𝑝  ∈  𝑡  ∧  𝑡  ⊆  ( 𝑢  ∩  𝑣 ) ) ) ) | 
						
							| 75 | 74 | rexlimdvva | ⊢ ( ( 𝑅  ∈  TopBases  ∧  𝑆  ∈  TopBases )  →  ( ∃ 𝑎  ∈  𝑅 ∃ 𝑐  ∈  𝑅 ( ∃ 𝑏  ∈  𝑆 𝑢  =  ( 𝑎  ×  𝑏 )  ∧  ∃ 𝑑  ∈  𝑆 𝑣  =  ( 𝑐  ×  𝑑 ) )  →  ∀ 𝑝  ∈  ( 𝑢  ∩  𝑣 ) ∃ 𝑡  ∈  𝐵 ( 𝑝  ∈  𝑡  ∧  𝑡  ⊆  ( 𝑢  ∩  𝑣 ) ) ) ) | 
						
							| 76 | 16 75 | biimtrid | ⊢ ( ( 𝑅  ∈  TopBases  ∧  𝑆  ∈  TopBases )  →  ( ( 𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵 )  →  ∀ 𝑝  ∈  ( 𝑢  ∩  𝑣 ) ∃ 𝑡  ∈  𝐵 ( 𝑝  ∈  𝑡  ∧  𝑡  ⊆  ( 𝑢  ∩  𝑣 ) ) ) ) | 
						
							| 77 | 76 | ralrimivv | ⊢ ( ( 𝑅  ∈  TopBases  ∧  𝑆  ∈  TopBases )  →  ∀ 𝑢  ∈  𝐵 ∀ 𝑣  ∈  𝐵 ∀ 𝑝  ∈  ( 𝑢  ∩  𝑣 ) ∃ 𝑡  ∈  𝐵 ( 𝑝  ∈  𝑡  ∧  𝑡  ⊆  ( 𝑢  ∩  𝑣 ) ) ) | 
						
							| 78 | 1 | txbasex | ⊢ ( ( 𝑅  ∈  TopBases  ∧  𝑆  ∈  TopBases )  →  𝐵  ∈  V ) | 
						
							| 79 |  | isbasis2g | ⊢ ( 𝐵  ∈  V  →  ( 𝐵  ∈  TopBases  ↔  ∀ 𝑢  ∈  𝐵 ∀ 𝑣  ∈  𝐵 ∀ 𝑝  ∈  ( 𝑢  ∩  𝑣 ) ∃ 𝑡  ∈  𝐵 ( 𝑝  ∈  𝑡  ∧  𝑡  ⊆  ( 𝑢  ∩  𝑣 ) ) ) ) | 
						
							| 80 | 78 79 | syl | ⊢ ( ( 𝑅  ∈  TopBases  ∧  𝑆  ∈  TopBases )  →  ( 𝐵  ∈  TopBases  ↔  ∀ 𝑢  ∈  𝐵 ∀ 𝑣  ∈  𝐵 ∀ 𝑝  ∈  ( 𝑢  ∩  𝑣 ) ∃ 𝑡  ∈  𝐵 ( 𝑝  ∈  𝑡  ∧  𝑡  ⊆  ( 𝑢  ∩  𝑣 ) ) ) ) | 
						
							| 81 | 77 80 | mpbird | ⊢ ( ( 𝑅  ∈  TopBases  ∧  𝑆  ∈  TopBases )  →  𝐵  ∈  TopBases ) |