Step |
Hyp |
Ref |
Expression |
1 |
|
txval.1 |
⊢ 𝐵 = ran ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑆 ↦ ( 𝑥 × 𝑦 ) ) |
2 |
|
xpeq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 × 𝑦 ) = ( 𝑎 × 𝑦 ) ) |
3 |
|
xpeq2 |
⊢ ( 𝑦 = 𝑏 → ( 𝑎 × 𝑦 ) = ( 𝑎 × 𝑏 ) ) |
4 |
2 3
|
cbvmpov |
⊢ ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑆 ↦ ( 𝑥 × 𝑦 ) ) = ( 𝑎 ∈ 𝑅 , 𝑏 ∈ 𝑆 ↦ ( 𝑎 × 𝑏 ) ) |
5 |
4
|
rnmpo |
⊢ ran ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑆 ↦ ( 𝑥 × 𝑦 ) ) = { 𝑢 ∣ ∃ 𝑎 ∈ 𝑅 ∃ 𝑏 ∈ 𝑆 𝑢 = ( 𝑎 × 𝑏 ) } |
6 |
1 5
|
eqtri |
⊢ 𝐵 = { 𝑢 ∣ ∃ 𝑎 ∈ 𝑅 ∃ 𝑏 ∈ 𝑆 𝑢 = ( 𝑎 × 𝑏 ) } |
7 |
6
|
abeq2i |
⊢ ( 𝑢 ∈ 𝐵 ↔ ∃ 𝑎 ∈ 𝑅 ∃ 𝑏 ∈ 𝑆 𝑢 = ( 𝑎 × 𝑏 ) ) |
8 |
|
xpeq1 |
⊢ ( 𝑥 = 𝑐 → ( 𝑥 × 𝑦 ) = ( 𝑐 × 𝑦 ) ) |
9 |
|
xpeq2 |
⊢ ( 𝑦 = 𝑑 → ( 𝑐 × 𝑦 ) = ( 𝑐 × 𝑑 ) ) |
10 |
8 9
|
cbvmpov |
⊢ ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑆 ↦ ( 𝑥 × 𝑦 ) ) = ( 𝑐 ∈ 𝑅 , 𝑑 ∈ 𝑆 ↦ ( 𝑐 × 𝑑 ) ) |
11 |
10
|
rnmpo |
⊢ ran ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑆 ↦ ( 𝑥 × 𝑦 ) ) = { 𝑣 ∣ ∃ 𝑐 ∈ 𝑅 ∃ 𝑑 ∈ 𝑆 𝑣 = ( 𝑐 × 𝑑 ) } |
12 |
1 11
|
eqtri |
⊢ 𝐵 = { 𝑣 ∣ ∃ 𝑐 ∈ 𝑅 ∃ 𝑑 ∈ 𝑆 𝑣 = ( 𝑐 × 𝑑 ) } |
13 |
12
|
abeq2i |
⊢ ( 𝑣 ∈ 𝐵 ↔ ∃ 𝑐 ∈ 𝑅 ∃ 𝑑 ∈ 𝑆 𝑣 = ( 𝑐 × 𝑑 ) ) |
14 |
7 13
|
anbi12i |
⊢ ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ↔ ( ∃ 𝑎 ∈ 𝑅 ∃ 𝑏 ∈ 𝑆 𝑢 = ( 𝑎 × 𝑏 ) ∧ ∃ 𝑐 ∈ 𝑅 ∃ 𝑑 ∈ 𝑆 𝑣 = ( 𝑐 × 𝑑 ) ) ) |
15 |
|
reeanv |
⊢ ( ∃ 𝑎 ∈ 𝑅 ∃ 𝑐 ∈ 𝑅 ( ∃ 𝑏 ∈ 𝑆 𝑢 = ( 𝑎 × 𝑏 ) ∧ ∃ 𝑑 ∈ 𝑆 𝑣 = ( 𝑐 × 𝑑 ) ) ↔ ( ∃ 𝑎 ∈ 𝑅 ∃ 𝑏 ∈ 𝑆 𝑢 = ( 𝑎 × 𝑏 ) ∧ ∃ 𝑐 ∈ 𝑅 ∃ 𝑑 ∈ 𝑆 𝑣 = ( 𝑐 × 𝑑 ) ) ) |
16 |
14 15
|
bitr4i |
⊢ ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ↔ ∃ 𝑎 ∈ 𝑅 ∃ 𝑐 ∈ 𝑅 ( ∃ 𝑏 ∈ 𝑆 𝑢 = ( 𝑎 × 𝑏 ) ∧ ∃ 𝑑 ∈ 𝑆 𝑣 = ( 𝑐 × 𝑑 ) ) ) |
17 |
|
reeanv |
⊢ ( ∃ 𝑏 ∈ 𝑆 ∃ 𝑑 ∈ 𝑆 ( 𝑢 = ( 𝑎 × 𝑏 ) ∧ 𝑣 = ( 𝑐 × 𝑑 ) ) ↔ ( ∃ 𝑏 ∈ 𝑆 𝑢 = ( 𝑎 × 𝑏 ) ∧ ∃ 𝑑 ∈ 𝑆 𝑣 = ( 𝑐 × 𝑑 ) ) ) |
18 |
|
basis2 |
⊢ ( ( ( 𝑅 ∈ TopBases ∧ 𝑎 ∈ 𝑅 ) ∧ ( 𝑐 ∈ 𝑅 ∧ 𝑢 ∈ ( 𝑎 ∩ 𝑐 ) ) ) → ∃ 𝑥 ∈ 𝑅 ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝑎 ∩ 𝑐 ) ) ) |
19 |
18
|
exp43 |
⊢ ( 𝑅 ∈ TopBases → ( 𝑎 ∈ 𝑅 → ( 𝑐 ∈ 𝑅 → ( 𝑢 ∈ ( 𝑎 ∩ 𝑐 ) → ∃ 𝑥 ∈ 𝑅 ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝑎 ∩ 𝑐 ) ) ) ) ) ) |
20 |
19
|
imp42 |
⊢ ( ( ( 𝑅 ∈ TopBases ∧ ( 𝑎 ∈ 𝑅 ∧ 𝑐 ∈ 𝑅 ) ) ∧ 𝑢 ∈ ( 𝑎 ∩ 𝑐 ) ) → ∃ 𝑥 ∈ 𝑅 ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝑎 ∩ 𝑐 ) ) ) |
21 |
|
basis2 |
⊢ ( ( ( 𝑆 ∈ TopBases ∧ 𝑏 ∈ 𝑆 ) ∧ ( 𝑑 ∈ 𝑆 ∧ 𝑣 ∈ ( 𝑏 ∩ 𝑑 ) ) ) → ∃ 𝑦 ∈ 𝑆 ( 𝑣 ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝑏 ∩ 𝑑 ) ) ) |
22 |
21
|
exp43 |
⊢ ( 𝑆 ∈ TopBases → ( 𝑏 ∈ 𝑆 → ( 𝑑 ∈ 𝑆 → ( 𝑣 ∈ ( 𝑏 ∩ 𝑑 ) → ∃ 𝑦 ∈ 𝑆 ( 𝑣 ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝑏 ∩ 𝑑 ) ) ) ) ) ) |
23 |
22
|
imp42 |
⊢ ( ( ( 𝑆 ∈ TopBases ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ∧ 𝑣 ∈ ( 𝑏 ∩ 𝑑 ) ) → ∃ 𝑦 ∈ 𝑆 ( 𝑣 ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝑏 ∩ 𝑑 ) ) ) |
24 |
|
reeanv |
⊢ ( ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ( ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝑎 ∩ 𝑐 ) ) ∧ ( 𝑣 ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝑏 ∩ 𝑑 ) ) ) ↔ ( ∃ 𝑥 ∈ 𝑅 ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝑎 ∩ 𝑐 ) ) ∧ ∃ 𝑦 ∈ 𝑆 ( 𝑣 ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝑏 ∩ 𝑑 ) ) ) ) |
25 |
|
opelxpi |
⊢ ( ( 𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑦 ) → 〈 𝑢 , 𝑣 〉 ∈ ( 𝑥 × 𝑦 ) ) |
26 |
|
xpss12 |
⊢ ( ( 𝑥 ⊆ ( 𝑎 ∩ 𝑐 ) ∧ 𝑦 ⊆ ( 𝑏 ∩ 𝑑 ) ) → ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) |
27 |
25 26
|
anim12i |
⊢ ( ( ( 𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑦 ) ∧ ( 𝑥 ⊆ ( 𝑎 ∩ 𝑐 ) ∧ 𝑦 ⊆ ( 𝑏 ∩ 𝑑 ) ) ) → ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) |
28 |
27
|
an4s |
⊢ ( ( ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝑎 ∩ 𝑐 ) ) ∧ ( 𝑣 ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝑏 ∩ 𝑑 ) ) ) → ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) |
29 |
28
|
reximi |
⊢ ( ∃ 𝑦 ∈ 𝑆 ( ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝑎 ∩ 𝑐 ) ) ∧ ( 𝑣 ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝑏 ∩ 𝑑 ) ) ) → ∃ 𝑦 ∈ 𝑆 ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) |
30 |
29
|
reximi |
⊢ ( ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ( ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝑎 ∩ 𝑐 ) ) ∧ ( 𝑣 ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝑏 ∩ 𝑑 ) ) ) → ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) |
31 |
24 30
|
sylbir |
⊢ ( ( ∃ 𝑥 ∈ 𝑅 ( 𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝑎 ∩ 𝑐 ) ) ∧ ∃ 𝑦 ∈ 𝑆 ( 𝑣 ∈ 𝑦 ∧ 𝑦 ⊆ ( 𝑏 ∩ 𝑑 ) ) ) → ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) |
32 |
20 23 31
|
syl2an |
⊢ ( ( ( ( 𝑅 ∈ TopBases ∧ ( 𝑎 ∈ 𝑅 ∧ 𝑐 ∈ 𝑅 ) ) ∧ 𝑢 ∈ ( 𝑎 ∩ 𝑐 ) ) ∧ ( ( 𝑆 ∈ TopBases ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ∧ 𝑣 ∈ ( 𝑏 ∩ 𝑑 ) ) ) → ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) |
33 |
32
|
an4s |
⊢ ( ( ( ( 𝑅 ∈ TopBases ∧ ( 𝑎 ∈ 𝑅 ∧ 𝑐 ∈ 𝑅 ) ) ∧ ( 𝑆 ∈ TopBases ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ) ∧ ( 𝑢 ∈ ( 𝑎 ∩ 𝑐 ) ∧ 𝑣 ∈ ( 𝑏 ∩ 𝑑 ) ) ) → ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) |
34 |
33
|
ralrimivva |
⊢ ( ( ( 𝑅 ∈ TopBases ∧ ( 𝑎 ∈ 𝑅 ∧ 𝑐 ∈ 𝑅 ) ) ∧ ( 𝑆 ∈ TopBases ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ) → ∀ 𝑢 ∈ ( 𝑎 ∩ 𝑐 ) ∀ 𝑣 ∈ ( 𝑏 ∩ 𝑑 ) ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) |
35 |
|
eleq1 |
⊢ ( 𝑝 = 〈 𝑢 , 𝑣 〉 → ( 𝑝 ∈ ( 𝑥 × 𝑦 ) ↔ 〈 𝑢 , 𝑣 〉 ∈ ( 𝑥 × 𝑦 ) ) ) |
36 |
35
|
anbi1d |
⊢ ( 𝑝 = 〈 𝑢 , 𝑣 〉 → ( ( 𝑝 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ↔ ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) ) |
37 |
36
|
2rexbidv |
⊢ ( 𝑝 = 〈 𝑢 , 𝑣 〉 → ( ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ( 𝑝 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ↔ ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) ) |
38 |
37
|
ralxp |
⊢ ( ∀ 𝑝 ∈ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ( 𝑝 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ↔ ∀ 𝑢 ∈ ( 𝑎 ∩ 𝑐 ) ∀ 𝑣 ∈ ( 𝑏 ∩ 𝑑 ) ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) |
39 |
34 38
|
sylibr |
⊢ ( ( ( 𝑅 ∈ TopBases ∧ ( 𝑎 ∈ 𝑅 ∧ 𝑐 ∈ 𝑅 ) ) ∧ ( 𝑆 ∈ TopBases ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ) → ∀ 𝑝 ∈ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ( 𝑝 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) |
40 |
39
|
an4s |
⊢ ( ( ( 𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases ) ∧ ( ( 𝑎 ∈ 𝑅 ∧ 𝑐 ∈ 𝑅 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) ) → ∀ 𝑝 ∈ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ( 𝑝 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) |
41 |
40
|
anassrs |
⊢ ( ( ( ( 𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases ) ∧ ( 𝑎 ∈ 𝑅 ∧ 𝑐 ∈ 𝑅 ) ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) → ∀ 𝑝 ∈ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ( 𝑝 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) |
42 |
|
ineq12 |
⊢ ( ( 𝑢 = ( 𝑎 × 𝑏 ) ∧ 𝑣 = ( 𝑐 × 𝑑 ) ) → ( 𝑢 ∩ 𝑣 ) = ( ( 𝑎 × 𝑏 ) ∩ ( 𝑐 × 𝑑 ) ) ) |
43 |
|
inxp |
⊢ ( ( 𝑎 × 𝑏 ) ∩ ( 𝑐 × 𝑑 ) ) = ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) |
44 |
42 43
|
eqtrdi |
⊢ ( ( 𝑢 = ( 𝑎 × 𝑏 ) ∧ 𝑣 = ( 𝑐 × 𝑑 ) ) → ( 𝑢 ∩ 𝑣 ) = ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) |
45 |
44
|
sseq2d |
⊢ ( ( 𝑢 = ( 𝑎 × 𝑏 ) ∧ 𝑣 = ( 𝑐 × 𝑑 ) ) → ( 𝑡 ⊆ ( 𝑢 ∩ 𝑣 ) ↔ 𝑡 ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) |
46 |
45
|
anbi2d |
⊢ ( ( 𝑢 = ( 𝑎 × 𝑏 ) ∧ 𝑣 = ( 𝑐 × 𝑑 ) ) → ( ( 𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ( 𝑢 ∩ 𝑣 ) ) ↔ ( 𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) ) |
47 |
46
|
rexbidv |
⊢ ( ( 𝑢 = ( 𝑎 × 𝑏 ) ∧ 𝑣 = ( 𝑐 × 𝑑 ) ) → ( ∃ 𝑡 ∈ 𝐵 ( 𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ( 𝑢 ∩ 𝑣 ) ) ↔ ∃ 𝑡 ∈ 𝐵 ( 𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) ) |
48 |
1
|
rexeqi |
⊢ ( ∃ 𝑡 ∈ 𝐵 ( 𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ↔ ∃ 𝑡 ∈ ran ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑆 ↦ ( 𝑥 × 𝑦 ) ) ( 𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) |
49 |
|
fvex |
⊢ ( 1st ‘ 𝑧 ) ∈ V |
50 |
|
fvex |
⊢ ( 2nd ‘ 𝑧 ) ∈ V |
51 |
49 50
|
xpex |
⊢ ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) ∈ V |
52 |
51
|
rgenw |
⊢ ∀ 𝑧 ∈ ( 𝑅 × 𝑆 ) ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) ∈ V |
53 |
|
vex |
⊢ 𝑥 ∈ V |
54 |
|
vex |
⊢ 𝑦 ∈ V |
55 |
53 54
|
op1std |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 1st ‘ 𝑧 ) = 𝑥 ) |
56 |
53 54
|
op2ndd |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 2nd ‘ 𝑧 ) = 𝑦 ) |
57 |
55 56
|
xpeq12d |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) = ( 𝑥 × 𝑦 ) ) |
58 |
57
|
mpompt |
⊢ ( 𝑧 ∈ ( 𝑅 × 𝑆 ) ↦ ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) ) = ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑆 ↦ ( 𝑥 × 𝑦 ) ) |
59 |
58
|
eqcomi |
⊢ ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑆 ↦ ( 𝑥 × 𝑦 ) ) = ( 𝑧 ∈ ( 𝑅 × 𝑆 ) ↦ ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) ) |
60 |
|
eleq2 |
⊢ ( 𝑡 = ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) → ( 𝑝 ∈ 𝑡 ↔ 𝑝 ∈ ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) ) ) |
61 |
|
sseq1 |
⊢ ( 𝑡 = ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) → ( 𝑡 ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ↔ ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) |
62 |
60 61
|
anbi12d |
⊢ ( 𝑡 = ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) → ( ( 𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ↔ ( 𝑝 ∈ ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) ∧ ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) ) |
63 |
59 62
|
rexrnmptw |
⊢ ( ∀ 𝑧 ∈ ( 𝑅 × 𝑆 ) ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) ∈ V → ( ∃ 𝑡 ∈ ran ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑆 ↦ ( 𝑥 × 𝑦 ) ) ( 𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ↔ ∃ 𝑧 ∈ ( 𝑅 × 𝑆 ) ( 𝑝 ∈ ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) ∧ ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) ) |
64 |
52 63
|
ax-mp |
⊢ ( ∃ 𝑡 ∈ ran ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑆 ↦ ( 𝑥 × 𝑦 ) ) ( 𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ↔ ∃ 𝑧 ∈ ( 𝑅 × 𝑆 ) ( 𝑝 ∈ ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) ∧ ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) |
65 |
57
|
eleq2d |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝑝 ∈ ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) ↔ 𝑝 ∈ ( 𝑥 × 𝑦 ) ) ) |
66 |
57
|
sseq1d |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ↔ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) |
67 |
65 66
|
anbi12d |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( 𝑝 ∈ ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) ∧ ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ↔ ( 𝑝 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) ) |
68 |
67
|
rexxp |
⊢ ( ∃ 𝑧 ∈ ( 𝑅 × 𝑆 ) ( 𝑝 ∈ ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) ∧ ( ( 1st ‘ 𝑧 ) × ( 2nd ‘ 𝑧 ) ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ↔ ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ( 𝑝 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) |
69 |
48 64 68
|
3bitri |
⊢ ( ∃ 𝑡 ∈ 𝐵 ( 𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ↔ ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ( 𝑝 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) |
70 |
47 69
|
bitrdi |
⊢ ( ( 𝑢 = ( 𝑎 × 𝑏 ) ∧ 𝑣 = ( 𝑐 × 𝑑 ) ) → ( ∃ 𝑡 ∈ 𝐵 ( 𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ( 𝑢 ∩ 𝑣 ) ) ↔ ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ( 𝑝 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) ) |
71 |
44 70
|
raleqbidv |
⊢ ( ( 𝑢 = ( 𝑎 × 𝑏 ) ∧ 𝑣 = ( 𝑐 × 𝑑 ) ) → ( ∀ 𝑝 ∈ ( 𝑢 ∩ 𝑣 ) ∃ 𝑡 ∈ 𝐵 ( 𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ( 𝑢 ∩ 𝑣 ) ) ↔ ∀ 𝑝 ∈ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ∃ 𝑥 ∈ 𝑅 ∃ 𝑦 ∈ 𝑆 ( 𝑝 ∈ ( 𝑥 × 𝑦 ) ∧ ( 𝑥 × 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑐 ) × ( 𝑏 ∩ 𝑑 ) ) ) ) ) |
72 |
41 71
|
syl5ibrcom |
⊢ ( ( ( ( 𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases ) ∧ ( 𝑎 ∈ 𝑅 ∧ 𝑐 ∈ 𝑅 ) ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑑 ∈ 𝑆 ) ) → ( ( 𝑢 = ( 𝑎 × 𝑏 ) ∧ 𝑣 = ( 𝑐 × 𝑑 ) ) → ∀ 𝑝 ∈ ( 𝑢 ∩ 𝑣 ) ∃ 𝑡 ∈ 𝐵 ( 𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) ) |
73 |
72
|
rexlimdvva |
⊢ ( ( ( 𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases ) ∧ ( 𝑎 ∈ 𝑅 ∧ 𝑐 ∈ 𝑅 ) ) → ( ∃ 𝑏 ∈ 𝑆 ∃ 𝑑 ∈ 𝑆 ( 𝑢 = ( 𝑎 × 𝑏 ) ∧ 𝑣 = ( 𝑐 × 𝑑 ) ) → ∀ 𝑝 ∈ ( 𝑢 ∩ 𝑣 ) ∃ 𝑡 ∈ 𝐵 ( 𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) ) |
74 |
17 73
|
syl5bir |
⊢ ( ( ( 𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases ) ∧ ( 𝑎 ∈ 𝑅 ∧ 𝑐 ∈ 𝑅 ) ) → ( ( ∃ 𝑏 ∈ 𝑆 𝑢 = ( 𝑎 × 𝑏 ) ∧ ∃ 𝑑 ∈ 𝑆 𝑣 = ( 𝑐 × 𝑑 ) ) → ∀ 𝑝 ∈ ( 𝑢 ∩ 𝑣 ) ∃ 𝑡 ∈ 𝐵 ( 𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) ) |
75 |
74
|
rexlimdvva |
⊢ ( ( 𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases ) → ( ∃ 𝑎 ∈ 𝑅 ∃ 𝑐 ∈ 𝑅 ( ∃ 𝑏 ∈ 𝑆 𝑢 = ( 𝑎 × 𝑏 ) ∧ ∃ 𝑑 ∈ 𝑆 𝑣 = ( 𝑐 × 𝑑 ) ) → ∀ 𝑝 ∈ ( 𝑢 ∩ 𝑣 ) ∃ 𝑡 ∈ 𝐵 ( 𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) ) |
76 |
16 75
|
syl5bi |
⊢ ( ( 𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases ) → ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) → ∀ 𝑝 ∈ ( 𝑢 ∩ 𝑣 ) ∃ 𝑡 ∈ 𝐵 ( 𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) ) |
77 |
76
|
ralrimivv |
⊢ ( ( 𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases ) → ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ∀ 𝑝 ∈ ( 𝑢 ∩ 𝑣 ) ∃ 𝑡 ∈ 𝐵 ( 𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) |
78 |
1
|
txbasex |
⊢ ( ( 𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases ) → 𝐵 ∈ V ) |
79 |
|
isbasis2g |
⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ TopBases ↔ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ∀ 𝑝 ∈ ( 𝑢 ∩ 𝑣 ) ∃ 𝑡 ∈ 𝐵 ( 𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) ) |
80 |
78 79
|
syl |
⊢ ( ( 𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases ) → ( 𝐵 ∈ TopBases ↔ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ∀ 𝑝 ∈ ( 𝑢 ∩ 𝑣 ) ∃ 𝑡 ∈ 𝐵 ( 𝑝 ∈ 𝑡 ∧ 𝑡 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) ) |
81 |
77 80
|
mpbird |
⊢ ( ( 𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases ) → 𝐵 ∈ TopBases ) |