| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cmptop | ⊢ ( 𝑅  ∈  Comp  →  𝑅  ∈  Top ) | 
						
							| 2 |  | cmptop | ⊢ ( 𝑆  ∈  Comp  →  𝑆  ∈  Top ) | 
						
							| 3 |  | txtop | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  ( 𝑅  ×t  𝑆 )  ∈  Top ) | 
						
							| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝑅  ∈  Comp  ∧  𝑆  ∈  Comp )  →  ( 𝑅  ×t  𝑆 )  ∈  Top ) | 
						
							| 5 |  | eqid | ⊢ ∪  𝑅  =  ∪  𝑅 | 
						
							| 6 |  | eqid | ⊢ ∪  𝑆  =  ∪  𝑆 | 
						
							| 7 |  | simpll | ⊢ ( ( ( 𝑅  ∈  Comp  ∧  𝑆  ∈  Comp )  ∧  ( 𝑤  ∈  𝒫  ( 𝑅  ×t  𝑆 )  ∧  ∪  ( 𝑅  ×t  𝑆 )  =  ∪  𝑤 ) )  →  𝑅  ∈  Comp ) | 
						
							| 8 |  | simplr | ⊢ ( ( ( 𝑅  ∈  Comp  ∧  𝑆  ∈  Comp )  ∧  ( 𝑤  ∈  𝒫  ( 𝑅  ×t  𝑆 )  ∧  ∪  ( 𝑅  ×t  𝑆 )  =  ∪  𝑤 ) )  →  𝑆  ∈  Comp ) | 
						
							| 9 |  | elpwi | ⊢ ( 𝑤  ∈  𝒫  ( 𝑅  ×t  𝑆 )  →  𝑤  ⊆  ( 𝑅  ×t  𝑆 ) ) | 
						
							| 10 | 9 | ad2antrl | ⊢ ( ( ( 𝑅  ∈  Comp  ∧  𝑆  ∈  Comp )  ∧  ( 𝑤  ∈  𝒫  ( 𝑅  ×t  𝑆 )  ∧  ∪  ( 𝑅  ×t  𝑆 )  =  ∪  𝑤 ) )  →  𝑤  ⊆  ( 𝑅  ×t  𝑆 ) ) | 
						
							| 11 | 5 6 | txuni | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  ( ∪  𝑅  ×  ∪  𝑆 )  =  ∪  ( 𝑅  ×t  𝑆 ) ) | 
						
							| 12 | 1 2 11 | syl2an | ⊢ ( ( 𝑅  ∈  Comp  ∧  𝑆  ∈  Comp )  →  ( ∪  𝑅  ×  ∪  𝑆 )  =  ∪  ( 𝑅  ×t  𝑆 ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( ( 𝑅  ∈  Comp  ∧  𝑆  ∈  Comp )  ∧  ( 𝑤  ∈  𝒫  ( 𝑅  ×t  𝑆 )  ∧  ∪  ( 𝑅  ×t  𝑆 )  =  ∪  𝑤 ) )  →  ( ∪  𝑅  ×  ∪  𝑆 )  =  ∪  ( 𝑅  ×t  𝑆 ) ) | 
						
							| 14 |  | simprr | ⊢ ( ( ( 𝑅  ∈  Comp  ∧  𝑆  ∈  Comp )  ∧  ( 𝑤  ∈  𝒫  ( 𝑅  ×t  𝑆 )  ∧  ∪  ( 𝑅  ×t  𝑆 )  =  ∪  𝑤 ) )  →  ∪  ( 𝑅  ×t  𝑆 )  =  ∪  𝑤 ) | 
						
							| 15 | 13 14 | eqtrd | ⊢ ( ( ( 𝑅  ∈  Comp  ∧  𝑆  ∈  Comp )  ∧  ( 𝑤  ∈  𝒫  ( 𝑅  ×t  𝑆 )  ∧  ∪  ( 𝑅  ×t  𝑆 )  =  ∪  𝑤 ) )  →  ( ∪  𝑅  ×  ∪  𝑆 )  =  ∪  𝑤 ) | 
						
							| 16 | 5 6 7 8 10 15 | txcmplem2 | ⊢ ( ( ( 𝑅  ∈  Comp  ∧  𝑆  ∈  Comp )  ∧  ( 𝑤  ∈  𝒫  ( 𝑅  ×t  𝑆 )  ∧  ∪  ( 𝑅  ×t  𝑆 )  =  ∪  𝑤 ) )  →  ∃ 𝑣  ∈  ( 𝒫  𝑤  ∩  Fin ) ( ∪  𝑅  ×  ∪  𝑆 )  =  ∪  𝑣 ) | 
						
							| 17 | 13 | eqeq1d | ⊢ ( ( ( 𝑅  ∈  Comp  ∧  𝑆  ∈  Comp )  ∧  ( 𝑤  ∈  𝒫  ( 𝑅  ×t  𝑆 )  ∧  ∪  ( 𝑅  ×t  𝑆 )  =  ∪  𝑤 ) )  →  ( ( ∪  𝑅  ×  ∪  𝑆 )  =  ∪  𝑣  ↔  ∪  ( 𝑅  ×t  𝑆 )  =  ∪  𝑣 ) ) | 
						
							| 18 | 17 | rexbidv | ⊢ ( ( ( 𝑅  ∈  Comp  ∧  𝑆  ∈  Comp )  ∧  ( 𝑤  ∈  𝒫  ( 𝑅  ×t  𝑆 )  ∧  ∪  ( 𝑅  ×t  𝑆 )  =  ∪  𝑤 ) )  →  ( ∃ 𝑣  ∈  ( 𝒫  𝑤  ∩  Fin ) ( ∪  𝑅  ×  ∪  𝑆 )  =  ∪  𝑣  ↔  ∃ 𝑣  ∈  ( 𝒫  𝑤  ∩  Fin ) ∪  ( 𝑅  ×t  𝑆 )  =  ∪  𝑣 ) ) | 
						
							| 19 | 16 18 | mpbid | ⊢ ( ( ( 𝑅  ∈  Comp  ∧  𝑆  ∈  Comp )  ∧  ( 𝑤  ∈  𝒫  ( 𝑅  ×t  𝑆 )  ∧  ∪  ( 𝑅  ×t  𝑆 )  =  ∪  𝑤 ) )  →  ∃ 𝑣  ∈  ( 𝒫  𝑤  ∩  Fin ) ∪  ( 𝑅  ×t  𝑆 )  =  ∪  𝑣 ) | 
						
							| 20 | 19 | expr | ⊢ ( ( ( 𝑅  ∈  Comp  ∧  𝑆  ∈  Comp )  ∧  𝑤  ∈  𝒫  ( 𝑅  ×t  𝑆 ) )  →  ( ∪  ( 𝑅  ×t  𝑆 )  =  ∪  𝑤  →  ∃ 𝑣  ∈  ( 𝒫  𝑤  ∩  Fin ) ∪  ( 𝑅  ×t  𝑆 )  =  ∪  𝑣 ) ) | 
						
							| 21 | 20 | ralrimiva | ⊢ ( ( 𝑅  ∈  Comp  ∧  𝑆  ∈  Comp )  →  ∀ 𝑤  ∈  𝒫  ( 𝑅  ×t  𝑆 ) ( ∪  ( 𝑅  ×t  𝑆 )  =  ∪  𝑤  →  ∃ 𝑣  ∈  ( 𝒫  𝑤  ∩  Fin ) ∪  ( 𝑅  ×t  𝑆 )  =  ∪  𝑣 ) ) | 
						
							| 22 |  | eqid | ⊢ ∪  ( 𝑅  ×t  𝑆 )  =  ∪  ( 𝑅  ×t  𝑆 ) | 
						
							| 23 | 22 | iscmp | ⊢ ( ( 𝑅  ×t  𝑆 )  ∈  Comp  ↔  ( ( 𝑅  ×t  𝑆 )  ∈  Top  ∧  ∀ 𝑤  ∈  𝒫  ( 𝑅  ×t  𝑆 ) ( ∪  ( 𝑅  ×t  𝑆 )  =  ∪  𝑤  →  ∃ 𝑣  ∈  ( 𝒫  𝑤  ∩  Fin ) ∪  ( 𝑅  ×t  𝑆 )  =  ∪  𝑣 ) ) ) | 
						
							| 24 | 4 21 23 | sylanbrc | ⊢ ( ( 𝑅  ∈  Comp  ∧  𝑆  ∈  Comp )  →  ( 𝑅  ×t  𝑆 )  ∈  Comp ) |