Step |
Hyp |
Ref |
Expression |
1 |
|
txcmp.x |
⊢ 𝑋 = ∪ 𝑅 |
2 |
|
txcmp.y |
⊢ 𝑌 = ∪ 𝑆 |
3 |
|
txcmp.r |
⊢ ( 𝜑 → 𝑅 ∈ Comp ) |
4 |
|
txcmp.s |
⊢ ( 𝜑 → 𝑆 ∈ Comp ) |
5 |
|
txcmp.w |
⊢ ( 𝜑 → 𝑊 ⊆ ( 𝑅 ×t 𝑆 ) ) |
6 |
|
txcmp.u |
⊢ ( 𝜑 → ( 𝑋 × 𝑌 ) = ∪ 𝑊 ) |
7 |
|
txcmp.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑌 ) |
8 |
|
id |
⊢ ( 𝑥 ∈ 𝑋 → 𝑥 ∈ 𝑋 ) |
9 |
|
opelxpi |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌 ) → 〈 𝑥 , 𝐴 〉 ∈ ( 𝑋 × 𝑌 ) ) |
10 |
8 7 9
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 〈 𝑥 , 𝐴 〉 ∈ ( 𝑋 × 𝑌 ) ) |
11 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑋 × 𝑌 ) = ∪ 𝑊 ) |
12 |
10 11
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 〈 𝑥 , 𝐴 〉 ∈ ∪ 𝑊 ) |
13 |
|
eluni2 |
⊢ ( 〈 𝑥 , 𝐴 〉 ∈ ∪ 𝑊 ↔ ∃ 𝑘 ∈ 𝑊 〈 𝑥 , 𝐴 〉 ∈ 𝑘 ) |
14 |
12 13
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑘 ∈ 𝑊 〈 𝑥 , 𝐴 〉 ∈ 𝑘 ) |
15 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑊 ⊆ ( 𝑅 ×t 𝑆 ) ) |
16 |
15
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑊 ) → 𝑘 ∈ ( 𝑅 ×t 𝑆 ) ) |
17 |
|
eltx |
⊢ ( ( 𝑅 ∈ Comp ∧ 𝑆 ∈ Comp ) → ( 𝑘 ∈ ( 𝑅 ×t 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑘 ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 𝑦 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) ) ) |
18 |
3 4 17
|
syl2anc |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝑅 ×t 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑘 ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 𝑦 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) ) ) |
19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑘 ∈ ( 𝑅 ×t 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑘 ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 𝑦 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) ) ) |
20 |
19
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ ( 𝑅 ×t 𝑆 ) ) → ∀ 𝑦 ∈ 𝑘 ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 𝑦 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) ) |
21 |
16 20
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑊 ) → ∀ 𝑦 ∈ 𝑘 ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 𝑦 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) ) |
22 |
|
eleq1 |
⊢ ( 𝑦 = 〈 𝑥 , 𝐴 〉 → ( 𝑦 ∈ ( 𝑟 × 𝑠 ) ↔ 〈 𝑥 , 𝐴 〉 ∈ ( 𝑟 × 𝑠 ) ) ) |
23 |
22
|
anbi1d |
⊢ ( 𝑦 = 〈 𝑥 , 𝐴 〉 → ( ( 𝑦 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) ↔ ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) ) ) |
24 |
23
|
2rexbidv |
⊢ ( 𝑦 = 〈 𝑥 , 𝐴 〉 → ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 𝑦 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) ↔ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) ) ) |
25 |
24
|
rspccv |
⊢ ( ∀ 𝑦 ∈ 𝑘 ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 𝑦 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) → ( 〈 𝑥 , 𝐴 〉 ∈ 𝑘 → ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) ) ) |
26 |
21 25
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑊 ) → ( 〈 𝑥 , 𝐴 〉 ∈ 𝑘 → ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) ) ) |
27 |
|
opelxp1 |
⊢ ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑟 × 𝑠 ) → 𝑥 ∈ 𝑟 ) |
28 |
27
|
ad2antrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑊 ) ∧ ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) ) → 𝑥 ∈ 𝑟 ) |
29 |
|
opelxp2 |
⊢ ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑟 × 𝑠 ) → 𝐴 ∈ 𝑠 ) |
30 |
29
|
ad2antrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑊 ) ∧ ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) ) → 𝐴 ∈ 𝑠 ) |
31 |
30
|
snssd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑊 ) ∧ ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) ) → { 𝐴 } ⊆ 𝑠 ) |
32 |
|
xpss2 |
⊢ ( { 𝐴 } ⊆ 𝑠 → ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑟 × 𝑠 ) ) |
33 |
31 32
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑊 ) ∧ ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) ) → ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑟 × 𝑠 ) ) |
34 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑊 ) ∧ ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) ) → ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) |
35 |
33 34
|
sstrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑊 ) ∧ ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) ) → ( 𝑟 × { 𝐴 } ) ⊆ 𝑘 ) |
36 |
28 35
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑊 ) ∧ ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) ) → ( 𝑥 ∈ 𝑟 ∧ ( 𝑟 × { 𝐴 } ) ⊆ 𝑘 ) ) |
37 |
36
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑊 ) → ( ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) → ( 𝑥 ∈ 𝑟 ∧ ( 𝑟 × { 𝐴 } ) ⊆ 𝑘 ) ) ) |
38 |
37
|
rexlimdvw |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑊 ) → ( ∃ 𝑠 ∈ 𝑆 ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) → ( 𝑥 ∈ 𝑟 ∧ ( 𝑟 × { 𝐴 } ) ⊆ 𝑘 ) ) ) |
39 |
38
|
reximdv |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑊 ) → ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 〈 𝑥 , 𝐴 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑘 ) → ∃ 𝑟 ∈ 𝑅 ( 𝑥 ∈ 𝑟 ∧ ( 𝑟 × { 𝐴 } ) ⊆ 𝑘 ) ) ) |
40 |
26 39
|
syld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑊 ) → ( 〈 𝑥 , 𝐴 〉 ∈ 𝑘 → ∃ 𝑟 ∈ 𝑅 ( 𝑥 ∈ 𝑟 ∧ ( 𝑟 × { 𝐴 } ) ⊆ 𝑘 ) ) ) |
41 |
40
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ∃ 𝑘 ∈ 𝑊 〈 𝑥 , 𝐴 〉 ∈ 𝑘 → ∃ 𝑘 ∈ 𝑊 ∃ 𝑟 ∈ 𝑅 ( 𝑥 ∈ 𝑟 ∧ ( 𝑟 × { 𝐴 } ) ⊆ 𝑘 ) ) ) |
42 |
14 41
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑘 ∈ 𝑊 ∃ 𝑟 ∈ 𝑅 ( 𝑥 ∈ 𝑟 ∧ ( 𝑟 × { 𝐴 } ) ⊆ 𝑘 ) ) |
43 |
|
rexcom |
⊢ ( ∃ 𝑘 ∈ 𝑊 ∃ 𝑟 ∈ 𝑅 ( 𝑥 ∈ 𝑟 ∧ ( 𝑟 × { 𝐴 } ) ⊆ 𝑘 ) ↔ ∃ 𝑟 ∈ 𝑅 ∃ 𝑘 ∈ 𝑊 ( 𝑥 ∈ 𝑟 ∧ ( 𝑟 × { 𝐴 } ) ⊆ 𝑘 ) ) |
44 |
|
r19.42v |
⊢ ( ∃ 𝑘 ∈ 𝑊 ( 𝑥 ∈ 𝑟 ∧ ( 𝑟 × { 𝐴 } ) ⊆ 𝑘 ) ↔ ( 𝑥 ∈ 𝑟 ∧ ∃ 𝑘 ∈ 𝑊 ( 𝑟 × { 𝐴 } ) ⊆ 𝑘 ) ) |
45 |
44
|
rexbii |
⊢ ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑘 ∈ 𝑊 ( 𝑥 ∈ 𝑟 ∧ ( 𝑟 × { 𝐴 } ) ⊆ 𝑘 ) ↔ ∃ 𝑟 ∈ 𝑅 ( 𝑥 ∈ 𝑟 ∧ ∃ 𝑘 ∈ 𝑊 ( 𝑟 × { 𝐴 } ) ⊆ 𝑘 ) ) |
46 |
43 45
|
bitri |
⊢ ( ∃ 𝑘 ∈ 𝑊 ∃ 𝑟 ∈ 𝑅 ( 𝑥 ∈ 𝑟 ∧ ( 𝑟 × { 𝐴 } ) ⊆ 𝑘 ) ↔ ∃ 𝑟 ∈ 𝑅 ( 𝑥 ∈ 𝑟 ∧ ∃ 𝑘 ∈ 𝑊 ( 𝑟 × { 𝐴 } ) ⊆ 𝑘 ) ) |
47 |
42 46
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑟 ∈ 𝑅 ( 𝑥 ∈ 𝑟 ∧ ∃ 𝑘 ∈ 𝑊 ( 𝑟 × { 𝐴 } ) ⊆ 𝑘 ) ) |
48 |
47
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∃ 𝑟 ∈ 𝑅 ( 𝑥 ∈ 𝑟 ∧ ∃ 𝑘 ∈ 𝑊 ( 𝑟 × { 𝐴 } ) ⊆ 𝑘 ) ) |
49 |
|
sseq2 |
⊢ ( 𝑘 = ( 𝑓 ‘ 𝑟 ) → ( ( 𝑟 × { 𝐴 } ) ⊆ 𝑘 ↔ ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) |
50 |
1 49
|
cmpcovf |
⊢ ( ( 𝑅 ∈ Comp ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑟 ∈ 𝑅 ( 𝑥 ∈ 𝑟 ∧ ∃ 𝑘 ∈ 𝑊 ( 𝑟 × { 𝐴 } ) ⊆ 𝑘 ) ) → ∃ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ( 𝑋 = ∪ 𝑡 ∧ ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) |
51 |
3 48 50
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ( 𝑋 = ∪ 𝑡 ∧ ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) |
52 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → 𝑅 ∈ Comp ) |
53 |
|
cmptop |
⊢ ( 𝑆 ∈ Comp → 𝑆 ∈ Top ) |
54 |
4 53
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ Top ) |
55 |
54
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → 𝑆 ∈ Top ) |
56 |
|
cmptop |
⊢ ( 𝑅 ∈ Comp → 𝑅 ∈ Top ) |
57 |
52 56
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → 𝑅 ∈ Top ) |
58 |
|
txtop |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) |
59 |
57 55 58
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) |
60 |
|
simprrl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → 𝑓 : 𝑡 ⟶ 𝑊 ) |
61 |
60
|
frnd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → ran 𝑓 ⊆ 𝑊 ) |
62 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → 𝑊 ⊆ ( 𝑅 ×t 𝑆 ) ) |
63 |
61 62
|
sstrd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → ran 𝑓 ⊆ ( 𝑅 ×t 𝑆 ) ) |
64 |
|
uniopn |
⊢ ( ( ( 𝑅 ×t 𝑆 ) ∈ Top ∧ ran 𝑓 ⊆ ( 𝑅 ×t 𝑆 ) ) → ∪ ran 𝑓 ∈ ( 𝑅 ×t 𝑆 ) ) |
65 |
59 63 64
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → ∪ ran 𝑓 ∈ ( 𝑅 ×t 𝑆 ) ) |
66 |
|
simprrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) |
67 |
|
ss2iun |
⊢ ( ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) → ∪ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ∪ 𝑟 ∈ 𝑡 ( 𝑓 ‘ 𝑟 ) ) |
68 |
66 67
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → ∪ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ∪ 𝑟 ∈ 𝑡 ( 𝑓 ‘ 𝑟 ) ) |
69 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → 𝑋 = ∪ 𝑡 ) |
70 |
|
uniiun |
⊢ ∪ 𝑡 = ∪ 𝑟 ∈ 𝑡 𝑟 |
71 |
69 70
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → 𝑋 = ∪ 𝑟 ∈ 𝑡 𝑟 ) |
72 |
71
|
xpeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → ( 𝑋 × { 𝐴 } ) = ( ∪ 𝑟 ∈ 𝑡 𝑟 × { 𝐴 } ) ) |
73 |
|
xpiundir |
⊢ ( ∪ 𝑟 ∈ 𝑡 𝑟 × { 𝐴 } ) = ∪ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) |
74 |
72 73
|
eqtr2di |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → ∪ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) = ( 𝑋 × { 𝐴 } ) ) |
75 |
60
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → 𝑓 Fn 𝑡 ) |
76 |
|
fniunfv |
⊢ ( 𝑓 Fn 𝑡 → ∪ 𝑟 ∈ 𝑡 ( 𝑓 ‘ 𝑟 ) = ∪ ran 𝑓 ) |
77 |
75 76
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → ∪ 𝑟 ∈ 𝑡 ( 𝑓 ‘ 𝑟 ) = ∪ ran 𝑓 ) |
78 |
68 74 77
|
3sstr3d |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → ( 𝑋 × { 𝐴 } ) ⊆ ∪ ran 𝑓 ) |
79 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → 𝐴 ∈ 𝑌 ) |
80 |
1 2 52 55 65 78 79
|
txtube |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → ∃ 𝑢 ∈ 𝑆 ( 𝐴 ∈ 𝑢 ∧ ( 𝑋 × 𝑢 ) ⊆ ∪ ran 𝑓 ) ) |
81 |
|
vex |
⊢ 𝑓 ∈ V |
82 |
81
|
rnex |
⊢ ran 𝑓 ∈ V |
83 |
82
|
elpw |
⊢ ( ran 𝑓 ∈ 𝒫 𝑊 ↔ ran 𝑓 ⊆ 𝑊 ) |
84 |
61 83
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → ran 𝑓 ∈ 𝒫 𝑊 ) |
85 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) |
86 |
85
|
elin2d |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → 𝑡 ∈ Fin ) |
87 |
|
dffn4 |
⊢ ( 𝑓 Fn 𝑡 ↔ 𝑓 : 𝑡 –onto→ ran 𝑓 ) |
88 |
75 87
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → 𝑓 : 𝑡 –onto→ ran 𝑓 ) |
89 |
|
fofi |
⊢ ( ( 𝑡 ∈ Fin ∧ 𝑓 : 𝑡 –onto→ ran 𝑓 ) → ran 𝑓 ∈ Fin ) |
90 |
86 88 89
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → ran 𝑓 ∈ Fin ) |
91 |
84 90
|
elind |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → ran 𝑓 ∈ ( 𝒫 𝑊 ∩ Fin ) ) |
92 |
|
unieq |
⊢ ( 𝑣 = ran 𝑓 → ∪ 𝑣 = ∪ ran 𝑓 ) |
93 |
92
|
sseq2d |
⊢ ( 𝑣 = ran 𝑓 → ( ( 𝑋 × 𝑢 ) ⊆ ∪ 𝑣 ↔ ( 𝑋 × 𝑢 ) ⊆ ∪ ran 𝑓 ) ) |
94 |
93
|
rspcev |
⊢ ( ( ran 𝑓 ∈ ( 𝒫 𝑊 ∩ Fin ) ∧ ( 𝑋 × 𝑢 ) ⊆ ∪ ran 𝑓 ) → ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑢 ) ⊆ ∪ 𝑣 ) |
95 |
94
|
ex |
⊢ ( ran 𝑓 ∈ ( 𝒫 𝑊 ∩ Fin ) → ( ( 𝑋 × 𝑢 ) ⊆ ∪ ran 𝑓 → ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑢 ) ⊆ ∪ 𝑣 ) ) |
96 |
91 95
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → ( ( 𝑋 × 𝑢 ) ⊆ ∪ ran 𝑓 → ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑢 ) ⊆ ∪ 𝑣 ) ) |
97 |
96
|
anim2d |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → ( ( 𝐴 ∈ 𝑢 ∧ ( 𝑋 × 𝑢 ) ⊆ ∪ ran 𝑓 ) → ( 𝐴 ∈ 𝑢 ∧ ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑢 ) ⊆ ∪ 𝑣 ) ) ) |
98 |
97
|
reximdv |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → ( ∃ 𝑢 ∈ 𝑆 ( 𝐴 ∈ 𝑢 ∧ ( 𝑋 × 𝑢 ) ⊆ ∪ ran 𝑓 ) → ∃ 𝑢 ∈ 𝑆 ( 𝐴 ∈ 𝑢 ∧ ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑢 ) ⊆ ∪ 𝑣 ) ) ) |
99 |
80 98
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ ( 𝑋 = ∪ 𝑡 ∧ ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) ) → ∃ 𝑢 ∈ 𝑆 ( 𝐴 ∈ 𝑢 ∧ ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑢 ) ⊆ ∪ 𝑣 ) ) |
100 |
99
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ 𝑋 = ∪ 𝑡 ) → ( ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) → ∃ 𝑢 ∈ 𝑆 ( 𝐴 ∈ 𝑢 ∧ ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑢 ) ⊆ ∪ 𝑣 ) ) ) |
101 |
100
|
exlimdv |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) ∧ 𝑋 = ∪ 𝑡 ) → ( ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) → ∃ 𝑢 ∈ 𝑆 ( 𝐴 ∈ 𝑢 ∧ ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑢 ) ⊆ ∪ 𝑣 ) ) ) |
102 |
101
|
expimpd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ) → ( ( 𝑋 = ∪ 𝑡 ∧ ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) → ∃ 𝑢 ∈ 𝑆 ( 𝐴 ∈ 𝑢 ∧ ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑢 ) ⊆ ∪ 𝑣 ) ) ) |
103 |
102
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑡 ∈ ( 𝒫 𝑅 ∩ Fin ) ( 𝑋 = ∪ 𝑡 ∧ ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ 𝑊 ∧ ∀ 𝑟 ∈ 𝑡 ( 𝑟 × { 𝐴 } ) ⊆ ( 𝑓 ‘ 𝑟 ) ) ) → ∃ 𝑢 ∈ 𝑆 ( 𝐴 ∈ 𝑢 ∧ ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑢 ) ⊆ ∪ 𝑣 ) ) ) |
104 |
51 103
|
mpd |
⊢ ( 𝜑 → ∃ 𝑢 ∈ 𝑆 ( 𝐴 ∈ 𝑢 ∧ ∃ 𝑣 ∈ ( 𝒫 𝑊 ∩ Fin ) ( 𝑋 × 𝑢 ) ⊆ ∪ 𝑣 ) ) |