| Step | Hyp | Ref | Expression | 
						
							| 1 |  | txcmp.x | ⊢ 𝑋  =  ∪  𝑅 | 
						
							| 2 |  | txcmp.y | ⊢ 𝑌  =  ∪  𝑆 | 
						
							| 3 |  | txcmp.r | ⊢ ( 𝜑  →  𝑅  ∈  Comp ) | 
						
							| 4 |  | txcmp.s | ⊢ ( 𝜑  →  𝑆  ∈  Comp ) | 
						
							| 5 |  | txcmp.w | ⊢ ( 𝜑  →  𝑊  ⊆  ( 𝑅  ×t  𝑆 ) ) | 
						
							| 6 |  | txcmp.u | ⊢ ( 𝜑  →  ( 𝑋  ×  𝑌 )  =  ∪  𝑊 ) | 
						
							| 7 |  | txcmp.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑌 ) | 
						
							| 8 |  | id | ⊢ ( 𝑥  ∈  𝑋  →  𝑥  ∈  𝑋 ) | 
						
							| 9 |  | opelxpi | ⊢ ( ( 𝑥  ∈  𝑋  ∧  𝐴  ∈  𝑌 )  →  〈 𝑥 ,  𝐴 〉  ∈  ( 𝑋  ×  𝑌 ) ) | 
						
							| 10 | 8 7 9 | syl2anr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  〈 𝑥 ,  𝐴 〉  ∈  ( 𝑋  ×  𝑌 ) ) | 
						
							| 11 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝑋  ×  𝑌 )  =  ∪  𝑊 ) | 
						
							| 12 | 10 11 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  〈 𝑥 ,  𝐴 〉  ∈  ∪  𝑊 ) | 
						
							| 13 |  | eluni2 | ⊢ ( 〈 𝑥 ,  𝐴 〉  ∈  ∪  𝑊  ↔  ∃ 𝑘  ∈  𝑊 〈 𝑥 ,  𝐴 〉  ∈  𝑘 ) | 
						
							| 14 | 12 13 | sylib | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ∃ 𝑘  ∈  𝑊 〈 𝑥 ,  𝐴 〉  ∈  𝑘 ) | 
						
							| 15 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝑊  ⊆  ( 𝑅  ×t  𝑆 ) ) | 
						
							| 16 | 15 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  𝑊 )  →  𝑘  ∈  ( 𝑅  ×t  𝑆 ) ) | 
						
							| 17 |  | eltx | ⊢ ( ( 𝑅  ∈  Comp  ∧  𝑆  ∈  Comp )  →  ( 𝑘  ∈  ( 𝑅  ×t  𝑆 )  ↔  ∀ 𝑦  ∈  𝑘 ∃ 𝑟  ∈  𝑅 ∃ 𝑠  ∈  𝑆 ( 𝑦  ∈  ( 𝑟  ×  𝑠 )  ∧  ( 𝑟  ×  𝑠 )  ⊆  𝑘 ) ) ) | 
						
							| 18 | 3 4 17 | syl2anc | ⊢ ( 𝜑  →  ( 𝑘  ∈  ( 𝑅  ×t  𝑆 )  ↔  ∀ 𝑦  ∈  𝑘 ∃ 𝑟  ∈  𝑅 ∃ 𝑠  ∈  𝑆 ( 𝑦  ∈  ( 𝑟  ×  𝑠 )  ∧  ( 𝑟  ×  𝑠 )  ⊆  𝑘 ) ) ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝑘  ∈  ( 𝑅  ×t  𝑆 )  ↔  ∀ 𝑦  ∈  𝑘 ∃ 𝑟  ∈  𝑅 ∃ 𝑠  ∈  𝑆 ( 𝑦  ∈  ( 𝑟  ×  𝑠 )  ∧  ( 𝑟  ×  𝑠 )  ⊆  𝑘 ) ) ) | 
						
							| 20 | 19 | biimpa | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  ( 𝑅  ×t  𝑆 ) )  →  ∀ 𝑦  ∈  𝑘 ∃ 𝑟  ∈  𝑅 ∃ 𝑠  ∈  𝑆 ( 𝑦  ∈  ( 𝑟  ×  𝑠 )  ∧  ( 𝑟  ×  𝑠 )  ⊆  𝑘 ) ) | 
						
							| 21 | 16 20 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  𝑊 )  →  ∀ 𝑦  ∈  𝑘 ∃ 𝑟  ∈  𝑅 ∃ 𝑠  ∈  𝑆 ( 𝑦  ∈  ( 𝑟  ×  𝑠 )  ∧  ( 𝑟  ×  𝑠 )  ⊆  𝑘 ) ) | 
						
							| 22 |  | eleq1 | ⊢ ( 𝑦  =  〈 𝑥 ,  𝐴 〉  →  ( 𝑦  ∈  ( 𝑟  ×  𝑠 )  ↔  〈 𝑥 ,  𝐴 〉  ∈  ( 𝑟  ×  𝑠 ) ) ) | 
						
							| 23 | 22 | anbi1d | ⊢ ( 𝑦  =  〈 𝑥 ,  𝐴 〉  →  ( ( 𝑦  ∈  ( 𝑟  ×  𝑠 )  ∧  ( 𝑟  ×  𝑠 )  ⊆  𝑘 )  ↔  ( 〈 𝑥 ,  𝐴 〉  ∈  ( 𝑟  ×  𝑠 )  ∧  ( 𝑟  ×  𝑠 )  ⊆  𝑘 ) ) ) | 
						
							| 24 | 23 | 2rexbidv | ⊢ ( 𝑦  =  〈 𝑥 ,  𝐴 〉  →  ( ∃ 𝑟  ∈  𝑅 ∃ 𝑠  ∈  𝑆 ( 𝑦  ∈  ( 𝑟  ×  𝑠 )  ∧  ( 𝑟  ×  𝑠 )  ⊆  𝑘 )  ↔  ∃ 𝑟  ∈  𝑅 ∃ 𝑠  ∈  𝑆 ( 〈 𝑥 ,  𝐴 〉  ∈  ( 𝑟  ×  𝑠 )  ∧  ( 𝑟  ×  𝑠 )  ⊆  𝑘 ) ) ) | 
						
							| 25 | 24 | rspccv | ⊢ ( ∀ 𝑦  ∈  𝑘 ∃ 𝑟  ∈  𝑅 ∃ 𝑠  ∈  𝑆 ( 𝑦  ∈  ( 𝑟  ×  𝑠 )  ∧  ( 𝑟  ×  𝑠 )  ⊆  𝑘 )  →  ( 〈 𝑥 ,  𝐴 〉  ∈  𝑘  →  ∃ 𝑟  ∈  𝑅 ∃ 𝑠  ∈  𝑆 ( 〈 𝑥 ,  𝐴 〉  ∈  ( 𝑟  ×  𝑠 )  ∧  ( 𝑟  ×  𝑠 )  ⊆  𝑘 ) ) ) | 
						
							| 26 | 21 25 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  𝑊 )  →  ( 〈 𝑥 ,  𝐴 〉  ∈  𝑘  →  ∃ 𝑟  ∈  𝑅 ∃ 𝑠  ∈  𝑆 ( 〈 𝑥 ,  𝐴 〉  ∈  ( 𝑟  ×  𝑠 )  ∧  ( 𝑟  ×  𝑠 )  ⊆  𝑘 ) ) ) | 
						
							| 27 |  | opelxp1 | ⊢ ( 〈 𝑥 ,  𝐴 〉  ∈  ( 𝑟  ×  𝑠 )  →  𝑥  ∈  𝑟 ) | 
						
							| 28 | 27 | ad2antrl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  𝑊 )  ∧  ( 〈 𝑥 ,  𝐴 〉  ∈  ( 𝑟  ×  𝑠 )  ∧  ( 𝑟  ×  𝑠 )  ⊆  𝑘 ) )  →  𝑥  ∈  𝑟 ) | 
						
							| 29 |  | opelxp2 | ⊢ ( 〈 𝑥 ,  𝐴 〉  ∈  ( 𝑟  ×  𝑠 )  →  𝐴  ∈  𝑠 ) | 
						
							| 30 | 29 | ad2antrl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  𝑊 )  ∧  ( 〈 𝑥 ,  𝐴 〉  ∈  ( 𝑟  ×  𝑠 )  ∧  ( 𝑟  ×  𝑠 )  ⊆  𝑘 ) )  →  𝐴  ∈  𝑠 ) | 
						
							| 31 | 30 | snssd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  𝑊 )  ∧  ( 〈 𝑥 ,  𝐴 〉  ∈  ( 𝑟  ×  𝑠 )  ∧  ( 𝑟  ×  𝑠 )  ⊆  𝑘 ) )  →  { 𝐴 }  ⊆  𝑠 ) | 
						
							| 32 |  | xpss2 | ⊢ ( { 𝐴 }  ⊆  𝑠  →  ( 𝑟  ×  { 𝐴 } )  ⊆  ( 𝑟  ×  𝑠 ) ) | 
						
							| 33 | 31 32 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  𝑊 )  ∧  ( 〈 𝑥 ,  𝐴 〉  ∈  ( 𝑟  ×  𝑠 )  ∧  ( 𝑟  ×  𝑠 )  ⊆  𝑘 ) )  →  ( 𝑟  ×  { 𝐴 } )  ⊆  ( 𝑟  ×  𝑠 ) ) | 
						
							| 34 |  | simprr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  𝑊 )  ∧  ( 〈 𝑥 ,  𝐴 〉  ∈  ( 𝑟  ×  𝑠 )  ∧  ( 𝑟  ×  𝑠 )  ⊆  𝑘 ) )  →  ( 𝑟  ×  𝑠 )  ⊆  𝑘 ) | 
						
							| 35 | 33 34 | sstrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  𝑊 )  ∧  ( 〈 𝑥 ,  𝐴 〉  ∈  ( 𝑟  ×  𝑠 )  ∧  ( 𝑟  ×  𝑠 )  ⊆  𝑘 ) )  →  ( 𝑟  ×  { 𝐴 } )  ⊆  𝑘 ) | 
						
							| 36 | 28 35 | jca | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  𝑊 )  ∧  ( 〈 𝑥 ,  𝐴 〉  ∈  ( 𝑟  ×  𝑠 )  ∧  ( 𝑟  ×  𝑠 )  ⊆  𝑘 ) )  →  ( 𝑥  ∈  𝑟  ∧  ( 𝑟  ×  { 𝐴 } )  ⊆  𝑘 ) ) | 
						
							| 37 | 36 | ex | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  𝑊 )  →  ( ( 〈 𝑥 ,  𝐴 〉  ∈  ( 𝑟  ×  𝑠 )  ∧  ( 𝑟  ×  𝑠 )  ⊆  𝑘 )  →  ( 𝑥  ∈  𝑟  ∧  ( 𝑟  ×  { 𝐴 } )  ⊆  𝑘 ) ) ) | 
						
							| 38 | 37 | rexlimdvw | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  𝑊 )  →  ( ∃ 𝑠  ∈  𝑆 ( 〈 𝑥 ,  𝐴 〉  ∈  ( 𝑟  ×  𝑠 )  ∧  ( 𝑟  ×  𝑠 )  ⊆  𝑘 )  →  ( 𝑥  ∈  𝑟  ∧  ( 𝑟  ×  { 𝐴 } )  ⊆  𝑘 ) ) ) | 
						
							| 39 | 38 | reximdv | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  𝑊 )  →  ( ∃ 𝑟  ∈  𝑅 ∃ 𝑠  ∈  𝑆 ( 〈 𝑥 ,  𝐴 〉  ∈  ( 𝑟  ×  𝑠 )  ∧  ( 𝑟  ×  𝑠 )  ⊆  𝑘 )  →  ∃ 𝑟  ∈  𝑅 ( 𝑥  ∈  𝑟  ∧  ( 𝑟  ×  { 𝐴 } )  ⊆  𝑘 ) ) ) | 
						
							| 40 | 26 39 | syld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  ∧  𝑘  ∈  𝑊 )  →  ( 〈 𝑥 ,  𝐴 〉  ∈  𝑘  →  ∃ 𝑟  ∈  𝑅 ( 𝑥  ∈  𝑟  ∧  ( 𝑟  ×  { 𝐴 } )  ⊆  𝑘 ) ) ) | 
						
							| 41 | 40 | reximdva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ∃ 𝑘  ∈  𝑊 〈 𝑥 ,  𝐴 〉  ∈  𝑘  →  ∃ 𝑘  ∈  𝑊 ∃ 𝑟  ∈  𝑅 ( 𝑥  ∈  𝑟  ∧  ( 𝑟  ×  { 𝐴 } )  ⊆  𝑘 ) ) ) | 
						
							| 42 | 14 41 | mpd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ∃ 𝑘  ∈  𝑊 ∃ 𝑟  ∈  𝑅 ( 𝑥  ∈  𝑟  ∧  ( 𝑟  ×  { 𝐴 } )  ⊆  𝑘 ) ) | 
						
							| 43 |  | rexcom | ⊢ ( ∃ 𝑘  ∈  𝑊 ∃ 𝑟  ∈  𝑅 ( 𝑥  ∈  𝑟  ∧  ( 𝑟  ×  { 𝐴 } )  ⊆  𝑘 )  ↔  ∃ 𝑟  ∈  𝑅 ∃ 𝑘  ∈  𝑊 ( 𝑥  ∈  𝑟  ∧  ( 𝑟  ×  { 𝐴 } )  ⊆  𝑘 ) ) | 
						
							| 44 |  | r19.42v | ⊢ ( ∃ 𝑘  ∈  𝑊 ( 𝑥  ∈  𝑟  ∧  ( 𝑟  ×  { 𝐴 } )  ⊆  𝑘 )  ↔  ( 𝑥  ∈  𝑟  ∧  ∃ 𝑘  ∈  𝑊 ( 𝑟  ×  { 𝐴 } )  ⊆  𝑘 ) ) | 
						
							| 45 | 44 | rexbii | ⊢ ( ∃ 𝑟  ∈  𝑅 ∃ 𝑘  ∈  𝑊 ( 𝑥  ∈  𝑟  ∧  ( 𝑟  ×  { 𝐴 } )  ⊆  𝑘 )  ↔  ∃ 𝑟  ∈  𝑅 ( 𝑥  ∈  𝑟  ∧  ∃ 𝑘  ∈  𝑊 ( 𝑟  ×  { 𝐴 } )  ⊆  𝑘 ) ) | 
						
							| 46 | 43 45 | bitri | ⊢ ( ∃ 𝑘  ∈  𝑊 ∃ 𝑟  ∈  𝑅 ( 𝑥  ∈  𝑟  ∧  ( 𝑟  ×  { 𝐴 } )  ⊆  𝑘 )  ↔  ∃ 𝑟  ∈  𝑅 ( 𝑥  ∈  𝑟  ∧  ∃ 𝑘  ∈  𝑊 ( 𝑟  ×  { 𝐴 } )  ⊆  𝑘 ) ) | 
						
							| 47 | 42 46 | sylib | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ∃ 𝑟  ∈  𝑅 ( 𝑥  ∈  𝑟  ∧  ∃ 𝑘  ∈  𝑊 ( 𝑟  ×  { 𝐴 } )  ⊆  𝑘 ) ) | 
						
							| 48 | 47 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑋 ∃ 𝑟  ∈  𝑅 ( 𝑥  ∈  𝑟  ∧  ∃ 𝑘  ∈  𝑊 ( 𝑟  ×  { 𝐴 } )  ⊆  𝑘 ) ) | 
						
							| 49 |  | sseq2 | ⊢ ( 𝑘  =  ( 𝑓 ‘ 𝑟 )  →  ( ( 𝑟  ×  { 𝐴 } )  ⊆  𝑘  ↔  ( 𝑟  ×  { 𝐴 } )  ⊆  ( 𝑓 ‘ 𝑟 ) ) ) | 
						
							| 50 | 1 49 | cmpcovf | ⊢ ( ( 𝑅  ∈  Comp  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑟  ∈  𝑅 ( 𝑥  ∈  𝑟  ∧  ∃ 𝑘  ∈  𝑊 ( 𝑟  ×  { 𝐴 } )  ⊆  𝑘 ) )  →  ∃ 𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) ( 𝑋  =  ∪  𝑡  ∧  ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ 𝑊  ∧  ∀ 𝑟  ∈  𝑡 ( 𝑟  ×  { 𝐴 } )  ⊆  ( 𝑓 ‘ 𝑟 ) ) ) ) | 
						
							| 51 | 3 48 50 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) ( 𝑋  =  ∪  𝑡  ∧  ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ 𝑊  ∧  ∀ 𝑟  ∈  𝑡 ( 𝑟  ×  { 𝐴 } )  ⊆  ( 𝑓 ‘ 𝑟 ) ) ) ) | 
						
							| 52 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑊  ∧  ∀ 𝑟  ∈  𝑡 ( 𝑟  ×  { 𝐴 } )  ⊆  ( 𝑓 ‘ 𝑟 ) ) ) )  →  𝑅  ∈  Comp ) | 
						
							| 53 |  | cmptop | ⊢ ( 𝑆  ∈  Comp  →  𝑆  ∈  Top ) | 
						
							| 54 | 4 53 | syl | ⊢ ( 𝜑  →  𝑆  ∈  Top ) | 
						
							| 55 | 54 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑊  ∧  ∀ 𝑟  ∈  𝑡 ( 𝑟  ×  { 𝐴 } )  ⊆  ( 𝑓 ‘ 𝑟 ) ) ) )  →  𝑆  ∈  Top ) | 
						
							| 56 |  | cmptop | ⊢ ( 𝑅  ∈  Comp  →  𝑅  ∈  Top ) | 
						
							| 57 | 52 56 | syl | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑊  ∧  ∀ 𝑟  ∈  𝑡 ( 𝑟  ×  { 𝐴 } )  ⊆  ( 𝑓 ‘ 𝑟 ) ) ) )  →  𝑅  ∈  Top ) | 
						
							| 58 |  | txtop | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  ( 𝑅  ×t  𝑆 )  ∈  Top ) | 
						
							| 59 | 57 55 58 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑊  ∧  ∀ 𝑟  ∈  𝑡 ( 𝑟  ×  { 𝐴 } )  ⊆  ( 𝑓 ‘ 𝑟 ) ) ) )  →  ( 𝑅  ×t  𝑆 )  ∈  Top ) | 
						
							| 60 |  | simprrl | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑊  ∧  ∀ 𝑟  ∈  𝑡 ( 𝑟  ×  { 𝐴 } )  ⊆  ( 𝑓 ‘ 𝑟 ) ) ) )  →  𝑓 : 𝑡 ⟶ 𝑊 ) | 
						
							| 61 | 60 | frnd | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑊  ∧  ∀ 𝑟  ∈  𝑡 ( 𝑟  ×  { 𝐴 } )  ⊆  ( 𝑓 ‘ 𝑟 ) ) ) )  →  ran  𝑓  ⊆  𝑊 ) | 
						
							| 62 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑊  ∧  ∀ 𝑟  ∈  𝑡 ( 𝑟  ×  { 𝐴 } )  ⊆  ( 𝑓 ‘ 𝑟 ) ) ) )  →  𝑊  ⊆  ( 𝑅  ×t  𝑆 ) ) | 
						
							| 63 | 61 62 | sstrd | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑊  ∧  ∀ 𝑟  ∈  𝑡 ( 𝑟  ×  { 𝐴 } )  ⊆  ( 𝑓 ‘ 𝑟 ) ) ) )  →  ran  𝑓  ⊆  ( 𝑅  ×t  𝑆 ) ) | 
						
							| 64 |  | uniopn | ⊢ ( ( ( 𝑅  ×t  𝑆 )  ∈  Top  ∧  ran  𝑓  ⊆  ( 𝑅  ×t  𝑆 ) )  →  ∪  ran  𝑓  ∈  ( 𝑅  ×t  𝑆 ) ) | 
						
							| 65 | 59 63 64 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑊  ∧  ∀ 𝑟  ∈  𝑡 ( 𝑟  ×  { 𝐴 } )  ⊆  ( 𝑓 ‘ 𝑟 ) ) ) )  →  ∪  ran  𝑓  ∈  ( 𝑅  ×t  𝑆 ) ) | 
						
							| 66 |  | simprrr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑊  ∧  ∀ 𝑟  ∈  𝑡 ( 𝑟  ×  { 𝐴 } )  ⊆  ( 𝑓 ‘ 𝑟 ) ) ) )  →  ∀ 𝑟  ∈  𝑡 ( 𝑟  ×  { 𝐴 } )  ⊆  ( 𝑓 ‘ 𝑟 ) ) | 
						
							| 67 |  | ss2iun | ⊢ ( ∀ 𝑟  ∈  𝑡 ( 𝑟  ×  { 𝐴 } )  ⊆  ( 𝑓 ‘ 𝑟 )  →  ∪  𝑟  ∈  𝑡 ( 𝑟  ×  { 𝐴 } )  ⊆  ∪  𝑟  ∈  𝑡 ( 𝑓 ‘ 𝑟 ) ) | 
						
							| 68 | 66 67 | syl | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑊  ∧  ∀ 𝑟  ∈  𝑡 ( 𝑟  ×  { 𝐴 } )  ⊆  ( 𝑓 ‘ 𝑟 ) ) ) )  →  ∪  𝑟  ∈  𝑡 ( 𝑟  ×  { 𝐴 } )  ⊆  ∪  𝑟  ∈  𝑡 ( 𝑓 ‘ 𝑟 ) ) | 
						
							| 69 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑊  ∧  ∀ 𝑟  ∈  𝑡 ( 𝑟  ×  { 𝐴 } )  ⊆  ( 𝑓 ‘ 𝑟 ) ) ) )  →  𝑋  =  ∪  𝑡 ) | 
						
							| 70 |  | uniiun | ⊢ ∪  𝑡  =  ∪  𝑟  ∈  𝑡 𝑟 | 
						
							| 71 | 69 70 | eqtrdi | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑊  ∧  ∀ 𝑟  ∈  𝑡 ( 𝑟  ×  { 𝐴 } )  ⊆  ( 𝑓 ‘ 𝑟 ) ) ) )  →  𝑋  =  ∪  𝑟  ∈  𝑡 𝑟 ) | 
						
							| 72 | 71 | xpeq1d | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑊  ∧  ∀ 𝑟  ∈  𝑡 ( 𝑟  ×  { 𝐴 } )  ⊆  ( 𝑓 ‘ 𝑟 ) ) ) )  →  ( 𝑋  ×  { 𝐴 } )  =  ( ∪  𝑟  ∈  𝑡 𝑟  ×  { 𝐴 } ) ) | 
						
							| 73 |  | xpiundir | ⊢ ( ∪  𝑟  ∈  𝑡 𝑟  ×  { 𝐴 } )  =  ∪  𝑟  ∈  𝑡 ( 𝑟  ×  { 𝐴 } ) | 
						
							| 74 | 72 73 | eqtr2di | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑊  ∧  ∀ 𝑟  ∈  𝑡 ( 𝑟  ×  { 𝐴 } )  ⊆  ( 𝑓 ‘ 𝑟 ) ) ) )  →  ∪  𝑟  ∈  𝑡 ( 𝑟  ×  { 𝐴 } )  =  ( 𝑋  ×  { 𝐴 } ) ) | 
						
							| 75 | 60 | ffnd | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑊  ∧  ∀ 𝑟  ∈  𝑡 ( 𝑟  ×  { 𝐴 } )  ⊆  ( 𝑓 ‘ 𝑟 ) ) ) )  →  𝑓  Fn  𝑡 ) | 
						
							| 76 |  | fniunfv | ⊢ ( 𝑓  Fn  𝑡  →  ∪  𝑟  ∈  𝑡 ( 𝑓 ‘ 𝑟 )  =  ∪  ran  𝑓 ) | 
						
							| 77 | 75 76 | syl | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑊  ∧  ∀ 𝑟  ∈  𝑡 ( 𝑟  ×  { 𝐴 } )  ⊆  ( 𝑓 ‘ 𝑟 ) ) ) )  →  ∪  𝑟  ∈  𝑡 ( 𝑓 ‘ 𝑟 )  =  ∪  ran  𝑓 ) | 
						
							| 78 | 68 74 77 | 3sstr3d | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑊  ∧  ∀ 𝑟  ∈  𝑡 ( 𝑟  ×  { 𝐴 } )  ⊆  ( 𝑓 ‘ 𝑟 ) ) ) )  →  ( 𝑋  ×  { 𝐴 } )  ⊆  ∪  ran  𝑓 ) | 
						
							| 79 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑊  ∧  ∀ 𝑟  ∈  𝑡 ( 𝑟  ×  { 𝐴 } )  ⊆  ( 𝑓 ‘ 𝑟 ) ) ) )  →  𝐴  ∈  𝑌 ) | 
						
							| 80 | 1 2 52 55 65 78 79 | txtube | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑊  ∧  ∀ 𝑟  ∈  𝑡 ( 𝑟  ×  { 𝐴 } )  ⊆  ( 𝑓 ‘ 𝑟 ) ) ) )  →  ∃ 𝑢  ∈  𝑆 ( 𝐴  ∈  𝑢  ∧  ( 𝑋  ×  𝑢 )  ⊆  ∪  ran  𝑓 ) ) | 
						
							| 81 |  | vex | ⊢ 𝑓  ∈  V | 
						
							| 82 | 81 | rnex | ⊢ ran  𝑓  ∈  V | 
						
							| 83 | 82 | elpw | ⊢ ( ran  𝑓  ∈  𝒫  𝑊  ↔  ran  𝑓  ⊆  𝑊 ) | 
						
							| 84 | 61 83 | sylibr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑊  ∧  ∀ 𝑟  ∈  𝑡 ( 𝑟  ×  { 𝐴 } )  ⊆  ( 𝑓 ‘ 𝑟 ) ) ) )  →  ran  𝑓  ∈  𝒫  𝑊 ) | 
						
							| 85 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑊  ∧  ∀ 𝑟  ∈  𝑡 ( 𝑟  ×  { 𝐴 } )  ⊆  ( 𝑓 ‘ 𝑟 ) ) ) )  →  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) ) | 
						
							| 86 | 85 | elin2d | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑊  ∧  ∀ 𝑟  ∈  𝑡 ( 𝑟  ×  { 𝐴 } )  ⊆  ( 𝑓 ‘ 𝑟 ) ) ) )  →  𝑡  ∈  Fin ) | 
						
							| 87 |  | dffn4 | ⊢ ( 𝑓  Fn  𝑡  ↔  𝑓 : 𝑡 –onto→ ran  𝑓 ) | 
						
							| 88 | 75 87 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑊  ∧  ∀ 𝑟  ∈  𝑡 ( 𝑟  ×  { 𝐴 } )  ⊆  ( 𝑓 ‘ 𝑟 ) ) ) )  →  𝑓 : 𝑡 –onto→ ran  𝑓 ) | 
						
							| 89 |  | fofi | ⊢ ( ( 𝑡  ∈  Fin  ∧  𝑓 : 𝑡 –onto→ ran  𝑓 )  →  ran  𝑓  ∈  Fin ) | 
						
							| 90 | 86 88 89 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑊  ∧  ∀ 𝑟  ∈  𝑡 ( 𝑟  ×  { 𝐴 } )  ⊆  ( 𝑓 ‘ 𝑟 ) ) ) )  →  ran  𝑓  ∈  Fin ) | 
						
							| 91 | 84 90 | elind | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑊  ∧  ∀ 𝑟  ∈  𝑡 ( 𝑟  ×  { 𝐴 } )  ⊆  ( 𝑓 ‘ 𝑟 ) ) ) )  →  ran  𝑓  ∈  ( 𝒫  𝑊  ∩  Fin ) ) | 
						
							| 92 |  | unieq | ⊢ ( 𝑣  =  ran  𝑓  →  ∪  𝑣  =  ∪  ran  𝑓 ) | 
						
							| 93 | 92 | sseq2d | ⊢ ( 𝑣  =  ran  𝑓  →  ( ( 𝑋  ×  𝑢 )  ⊆  ∪  𝑣  ↔  ( 𝑋  ×  𝑢 )  ⊆  ∪  ran  𝑓 ) ) | 
						
							| 94 | 93 | rspcev | ⊢ ( ( ran  𝑓  ∈  ( 𝒫  𝑊  ∩  Fin )  ∧  ( 𝑋  ×  𝑢 )  ⊆  ∪  ran  𝑓 )  →  ∃ 𝑣  ∈  ( 𝒫  𝑊  ∩  Fin ) ( 𝑋  ×  𝑢 )  ⊆  ∪  𝑣 ) | 
						
							| 95 | 94 | ex | ⊢ ( ran  𝑓  ∈  ( 𝒫  𝑊  ∩  Fin )  →  ( ( 𝑋  ×  𝑢 )  ⊆  ∪  ran  𝑓  →  ∃ 𝑣  ∈  ( 𝒫  𝑊  ∩  Fin ) ( 𝑋  ×  𝑢 )  ⊆  ∪  𝑣 ) ) | 
						
							| 96 | 91 95 | syl | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑊  ∧  ∀ 𝑟  ∈  𝑡 ( 𝑟  ×  { 𝐴 } )  ⊆  ( 𝑓 ‘ 𝑟 ) ) ) )  →  ( ( 𝑋  ×  𝑢 )  ⊆  ∪  ran  𝑓  →  ∃ 𝑣  ∈  ( 𝒫  𝑊  ∩  Fin ) ( 𝑋  ×  𝑢 )  ⊆  ∪  𝑣 ) ) | 
						
							| 97 | 96 | anim2d | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑊  ∧  ∀ 𝑟  ∈  𝑡 ( 𝑟  ×  { 𝐴 } )  ⊆  ( 𝑓 ‘ 𝑟 ) ) ) )  →  ( ( 𝐴  ∈  𝑢  ∧  ( 𝑋  ×  𝑢 )  ⊆  ∪  ran  𝑓 )  →  ( 𝐴  ∈  𝑢  ∧  ∃ 𝑣  ∈  ( 𝒫  𝑊  ∩  Fin ) ( 𝑋  ×  𝑢 )  ⊆  ∪  𝑣 ) ) ) | 
						
							| 98 | 97 | reximdv | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑊  ∧  ∀ 𝑟  ∈  𝑡 ( 𝑟  ×  { 𝐴 } )  ⊆  ( 𝑓 ‘ 𝑟 ) ) ) )  →  ( ∃ 𝑢  ∈  𝑆 ( 𝐴  ∈  𝑢  ∧  ( 𝑋  ×  𝑢 )  ⊆  ∪  ran  𝑓 )  →  ∃ 𝑢  ∈  𝑆 ( 𝐴  ∈  𝑢  ∧  ∃ 𝑣  ∈  ( 𝒫  𝑊  ∩  Fin ) ( 𝑋  ×  𝑢 )  ⊆  ∪  𝑣 ) ) ) | 
						
							| 99 | 80 98 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  ( 𝑋  =  ∪  𝑡  ∧  ( 𝑓 : 𝑡 ⟶ 𝑊  ∧  ∀ 𝑟  ∈  𝑡 ( 𝑟  ×  { 𝐴 } )  ⊆  ( 𝑓 ‘ 𝑟 ) ) ) )  →  ∃ 𝑢  ∈  𝑆 ( 𝐴  ∈  𝑢  ∧  ∃ 𝑣  ∈  ( 𝒫  𝑊  ∩  Fin ) ( 𝑋  ×  𝑢 )  ⊆  ∪  𝑣 ) ) | 
						
							| 100 | 99 | expr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  𝑋  =  ∪  𝑡 )  →  ( ( 𝑓 : 𝑡 ⟶ 𝑊  ∧  ∀ 𝑟  ∈  𝑡 ( 𝑟  ×  { 𝐴 } )  ⊆  ( 𝑓 ‘ 𝑟 ) )  →  ∃ 𝑢  ∈  𝑆 ( 𝐴  ∈  𝑢  ∧  ∃ 𝑣  ∈  ( 𝒫  𝑊  ∩  Fin ) ( 𝑋  ×  𝑢 )  ⊆  ∪  𝑣 ) ) ) | 
						
							| 101 | 100 | exlimdv | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  ∧  𝑋  =  ∪  𝑡 )  →  ( ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ 𝑊  ∧  ∀ 𝑟  ∈  𝑡 ( 𝑟  ×  { 𝐴 } )  ⊆  ( 𝑓 ‘ 𝑟 ) )  →  ∃ 𝑢  ∈  𝑆 ( 𝐴  ∈  𝑢  ∧  ∃ 𝑣  ∈  ( 𝒫  𝑊  ∩  Fin ) ( 𝑋  ×  𝑢 )  ⊆  ∪  𝑣 ) ) ) | 
						
							| 102 | 101 | expimpd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) )  →  ( ( 𝑋  =  ∪  𝑡  ∧  ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ 𝑊  ∧  ∀ 𝑟  ∈  𝑡 ( 𝑟  ×  { 𝐴 } )  ⊆  ( 𝑓 ‘ 𝑟 ) ) )  →  ∃ 𝑢  ∈  𝑆 ( 𝐴  ∈  𝑢  ∧  ∃ 𝑣  ∈  ( 𝒫  𝑊  ∩  Fin ) ( 𝑋  ×  𝑢 )  ⊆  ∪  𝑣 ) ) ) | 
						
							| 103 | 102 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑡  ∈  ( 𝒫  𝑅  ∩  Fin ) ( 𝑋  =  ∪  𝑡  ∧  ∃ 𝑓 ( 𝑓 : 𝑡 ⟶ 𝑊  ∧  ∀ 𝑟  ∈  𝑡 ( 𝑟  ×  { 𝐴 } )  ⊆  ( 𝑓 ‘ 𝑟 ) ) )  →  ∃ 𝑢  ∈  𝑆 ( 𝐴  ∈  𝑢  ∧  ∃ 𝑣  ∈  ( 𝒫  𝑊  ∩  Fin ) ( 𝑋  ×  𝑢 )  ⊆  ∪  𝑣 ) ) ) | 
						
							| 104 | 51 103 | mpd | ⊢ ( 𝜑  →  ∃ 𝑢  ∈  𝑆 ( 𝐴  ∈  𝑢  ∧  ∃ 𝑣  ∈  ( 𝒫  𝑊  ∩  Fin ) ( 𝑋  ×  𝑢 )  ⊆  ∪  𝑣 ) ) |