| Step | Hyp | Ref | Expression | 
						
							| 1 |  | txcn.1 | ⊢ 𝑋  =  ∪  𝑅 | 
						
							| 2 |  | txcn.2 | ⊢ 𝑌  =  ∪  𝑆 | 
						
							| 3 |  | txcn.3 | ⊢ 𝑍  =  ( 𝑋  ×  𝑌 ) | 
						
							| 4 |  | txcn.4 | ⊢ 𝑊  =  ∪  𝑈 | 
						
							| 5 |  | txcn.5 | ⊢ 𝑃  =  ( 1st   ↾  𝑍 ) | 
						
							| 6 |  | txcn.6 | ⊢ 𝑄  =  ( 2nd   ↾  𝑍 ) | 
						
							| 7 | 1 | toptopon | ⊢ ( 𝑅  ∈  Top  ↔  𝑅  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 8 | 2 | toptopon | ⊢ ( 𝑆  ∈  Top  ↔  𝑆  ∈  ( TopOn ‘ 𝑌 ) ) | 
						
							| 9 | 3 | reseq2i | ⊢ ( 1st   ↾  𝑍 )  =  ( 1st   ↾  ( 𝑋  ×  𝑌 ) ) | 
						
							| 10 | 5 9 | eqtri | ⊢ 𝑃  =  ( 1st   ↾  ( 𝑋  ×  𝑌 ) ) | 
						
							| 11 |  | tx1cn | ⊢ ( ( 𝑅  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑆  ∈  ( TopOn ‘ 𝑌 ) )  →  ( 1st   ↾  ( 𝑋  ×  𝑌 ) )  ∈  ( ( 𝑅  ×t  𝑆 )  Cn  𝑅 ) ) | 
						
							| 12 | 10 11 | eqeltrid | ⊢ ( ( 𝑅  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑆  ∈  ( TopOn ‘ 𝑌 ) )  →  𝑃  ∈  ( ( 𝑅  ×t  𝑆 )  Cn  𝑅 ) ) | 
						
							| 13 | 3 | reseq2i | ⊢ ( 2nd   ↾  𝑍 )  =  ( 2nd   ↾  ( 𝑋  ×  𝑌 ) ) | 
						
							| 14 | 6 13 | eqtri | ⊢ 𝑄  =  ( 2nd   ↾  ( 𝑋  ×  𝑌 ) ) | 
						
							| 15 |  | tx2cn | ⊢ ( ( 𝑅  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑆  ∈  ( TopOn ‘ 𝑌 ) )  →  ( 2nd   ↾  ( 𝑋  ×  𝑌 ) )  ∈  ( ( 𝑅  ×t  𝑆 )  Cn  𝑆 ) ) | 
						
							| 16 | 14 15 | eqeltrid | ⊢ ( ( 𝑅  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑆  ∈  ( TopOn ‘ 𝑌 ) )  →  𝑄  ∈  ( ( 𝑅  ×t  𝑆 )  Cn  𝑆 ) ) | 
						
							| 17 |  | cnco | ⊢ ( ( 𝐹  ∈  ( 𝑈  Cn  ( 𝑅  ×t  𝑆 ) )  ∧  𝑃  ∈  ( ( 𝑅  ×t  𝑆 )  Cn  𝑅 ) )  →  ( 𝑃  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑅 ) ) | 
						
							| 18 |  | cnco | ⊢ ( ( 𝐹  ∈  ( 𝑈  Cn  ( 𝑅  ×t  𝑆 ) )  ∧  𝑄  ∈  ( ( 𝑅  ×t  𝑆 )  Cn  𝑆 ) )  →  ( 𝑄  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑆 ) ) | 
						
							| 19 | 17 18 | anim12dan | ⊢ ( ( 𝐹  ∈  ( 𝑈  Cn  ( 𝑅  ×t  𝑆 ) )  ∧  ( 𝑃  ∈  ( ( 𝑅  ×t  𝑆 )  Cn  𝑅 )  ∧  𝑄  ∈  ( ( 𝑅  ×t  𝑆 )  Cn  𝑆 ) ) )  →  ( ( 𝑃  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑅 )  ∧  ( 𝑄  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑆 ) ) ) | 
						
							| 20 | 19 | expcom | ⊢ ( ( 𝑃  ∈  ( ( 𝑅  ×t  𝑆 )  Cn  𝑅 )  ∧  𝑄  ∈  ( ( 𝑅  ×t  𝑆 )  Cn  𝑆 ) )  →  ( 𝐹  ∈  ( 𝑈  Cn  ( 𝑅  ×t  𝑆 ) )  →  ( ( 𝑃  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑅 )  ∧  ( 𝑄  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑆 ) ) ) ) | 
						
							| 21 | 12 16 20 | syl2anc | ⊢ ( ( 𝑅  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑆  ∈  ( TopOn ‘ 𝑌 ) )  →  ( 𝐹  ∈  ( 𝑈  Cn  ( 𝑅  ×t  𝑆 ) )  →  ( ( 𝑃  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑅 )  ∧  ( 𝑄  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑆 ) ) ) ) | 
						
							| 22 | 7 8 21 | syl2anb | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  ( 𝐹  ∈  ( 𝑈  Cn  ( 𝑅  ×t  𝑆 ) )  →  ( ( 𝑃  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑅 )  ∧  ( 𝑄  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑆 ) ) ) ) | 
						
							| 23 | 22 | 3adant3 | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top  ∧  𝐹 : 𝑊 ⟶ 𝑍 )  →  ( 𝐹  ∈  ( 𝑈  Cn  ( 𝑅  ×t  𝑆 ) )  →  ( ( 𝑃  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑅 )  ∧  ( 𝑄  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑆 ) ) ) ) | 
						
							| 24 |  | cntop1 | ⊢ ( ( 𝑃  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑅 )  →  𝑈  ∈  Top ) | 
						
							| 25 | 24 | ad2antrl | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top  ∧  𝐹 : 𝑊 ⟶ 𝑍 )  ∧  ( ( 𝑃  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑅 )  ∧  ( 𝑄  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑆 ) ) )  →  𝑈  ∈  Top ) | 
						
							| 26 | 4 | topopn | ⊢ ( 𝑈  ∈  Top  →  𝑊  ∈  𝑈 ) | 
						
							| 27 | 25 26 | syl | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top  ∧  𝐹 : 𝑊 ⟶ 𝑍 )  ∧  ( ( 𝑃  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑅 )  ∧  ( 𝑄  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑆 ) ) )  →  𝑊  ∈  𝑈 ) | 
						
							| 28 | 4 1 | cnf | ⊢ ( ( 𝑃  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑅 )  →  ( 𝑃  ∘  𝐹 ) : 𝑊 ⟶ 𝑋 ) | 
						
							| 29 | 28 | ad2antrl | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top  ∧  𝐹 : 𝑊 ⟶ 𝑍 )  ∧  ( ( 𝑃  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑅 )  ∧  ( 𝑄  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑆 ) ) )  →  ( 𝑃  ∘  𝐹 ) : 𝑊 ⟶ 𝑋 ) | 
						
							| 30 | 4 2 | cnf | ⊢ ( ( 𝑄  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑆 )  →  ( 𝑄  ∘  𝐹 ) : 𝑊 ⟶ 𝑌 ) | 
						
							| 31 | 30 | ad2antll | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top  ∧  𝐹 : 𝑊 ⟶ 𝑍 )  ∧  ( ( 𝑃  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑅 )  ∧  ( 𝑄  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑆 ) ) )  →  ( 𝑄  ∘  𝐹 ) : 𝑊 ⟶ 𝑌 ) | 
						
							| 32 | 10 14 | upxp | ⊢ ( ( 𝑊  ∈  𝑈  ∧  ( 𝑃  ∘  𝐹 ) : 𝑊 ⟶ 𝑋  ∧  ( 𝑄  ∘  𝐹 ) : 𝑊 ⟶ 𝑌 )  →  ∃! ℎ ( ℎ : 𝑊 ⟶ ( 𝑋  ×  𝑌 )  ∧  ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) ) ) | 
						
							| 33 |  | feq3 | ⊢ ( 𝑍  =  ( 𝑋  ×  𝑌 )  →  ( ℎ : 𝑊 ⟶ 𝑍  ↔  ℎ : 𝑊 ⟶ ( 𝑋  ×  𝑌 ) ) ) | 
						
							| 34 | 3 33 | ax-mp | ⊢ ( ℎ : 𝑊 ⟶ 𝑍  ↔  ℎ : 𝑊 ⟶ ( 𝑋  ×  𝑌 ) ) | 
						
							| 35 | 34 | 3anbi1i | ⊢ ( ( ℎ : 𝑊 ⟶ 𝑍  ∧  ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) )  ↔  ( ℎ : 𝑊 ⟶ ( 𝑋  ×  𝑌 )  ∧  ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) ) ) | 
						
							| 36 | 35 | eubii | ⊢ ( ∃! ℎ ( ℎ : 𝑊 ⟶ 𝑍  ∧  ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) )  ↔  ∃! ℎ ( ℎ : 𝑊 ⟶ ( 𝑋  ×  𝑌 )  ∧  ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) ) ) | 
						
							| 37 | 32 36 | sylibr | ⊢ ( ( 𝑊  ∈  𝑈  ∧  ( 𝑃  ∘  𝐹 ) : 𝑊 ⟶ 𝑋  ∧  ( 𝑄  ∘  𝐹 ) : 𝑊 ⟶ 𝑌 )  →  ∃! ℎ ( ℎ : 𝑊 ⟶ 𝑍  ∧  ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) ) ) | 
						
							| 38 | 27 29 31 37 | syl3anc | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top  ∧  𝐹 : 𝑊 ⟶ 𝑍 )  ∧  ( ( 𝑃  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑅 )  ∧  ( 𝑄  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑆 ) ) )  →  ∃! ℎ ( ℎ : 𝑊 ⟶ 𝑍  ∧  ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) ) ) | 
						
							| 39 |  | euex | ⊢ ( ∃! ℎ ( ℎ : 𝑊 ⟶ 𝑍  ∧  ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) )  →  ∃ ℎ ( ℎ : 𝑊 ⟶ 𝑍  ∧  ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) ) ) | 
						
							| 40 | 38 39 | syl | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top  ∧  𝐹 : 𝑊 ⟶ 𝑍 )  ∧  ( ( 𝑃  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑅 )  ∧  ( 𝑄  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑆 ) ) )  →  ∃ ℎ ( ℎ : 𝑊 ⟶ 𝑍  ∧  ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) ) ) | 
						
							| 41 |  | simpll3 | ⊢ ( ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top  ∧  𝐹 : 𝑊 ⟶ 𝑍 )  ∧  ( ( 𝑃  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑅 )  ∧  ( 𝑄  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑆 ) ) )  ∧  ( ℎ : 𝑊 ⟶ 𝑍  ∧  ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) ) )  →  𝐹 : 𝑊 ⟶ 𝑍 ) | 
						
							| 42 | 27 | adantr | ⊢ ( ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top  ∧  𝐹 : 𝑊 ⟶ 𝑍 )  ∧  ( ( 𝑃  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑅 )  ∧  ( 𝑄  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑆 ) ) )  ∧  ( ℎ : 𝑊 ⟶ 𝑍  ∧  ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) ) )  →  𝑊  ∈  𝑈 ) | 
						
							| 43 | 41 42 | fexd | ⊢ ( ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top  ∧  𝐹 : 𝑊 ⟶ 𝑍 )  ∧  ( ( 𝑃  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑅 )  ∧  ( 𝑄  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑆 ) ) )  ∧  ( ℎ : 𝑊 ⟶ 𝑍  ∧  ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) ) )  →  𝐹  ∈  V ) | 
						
							| 44 |  | eumo | ⊢ ( ∃! ℎ ( ℎ : 𝑊 ⟶ 𝑍  ∧  ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) )  →  ∃* ℎ ( ℎ : 𝑊 ⟶ 𝑍  ∧  ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) ) ) | 
						
							| 45 | 38 44 | syl | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top  ∧  𝐹 : 𝑊 ⟶ 𝑍 )  ∧  ( ( 𝑃  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑅 )  ∧  ( 𝑄  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑆 ) ) )  →  ∃* ℎ ( ℎ : 𝑊 ⟶ 𝑍  ∧  ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) ) ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top  ∧  𝐹 : 𝑊 ⟶ 𝑍 )  ∧  ( ( 𝑃  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑅 )  ∧  ( 𝑄  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑆 ) ) )  ∧  ( ℎ : 𝑊 ⟶ 𝑍  ∧  ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) ) )  →  ∃* ℎ ( ℎ : 𝑊 ⟶ 𝑍  ∧  ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) ) ) | 
						
							| 47 |  | simpr | ⊢ ( ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top  ∧  𝐹 : 𝑊 ⟶ 𝑍 )  ∧  ( ( 𝑃  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑅 )  ∧  ( 𝑄  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑆 ) ) )  ∧  ( ℎ : 𝑊 ⟶ 𝑍  ∧  ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) ) )  →  ( ℎ : 𝑊 ⟶ 𝑍  ∧  ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) ) ) | 
						
							| 48 |  | 3anass | ⊢ ( ( ℎ : 𝑊 ⟶ 𝑍  ∧  ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) )  ↔  ( ℎ : 𝑊 ⟶ 𝑍  ∧  ( ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) ) ) ) | 
						
							| 49 |  | coeq2 | ⊢ ( 𝐹  =  ℎ  →  ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ ) ) | 
						
							| 50 |  | coeq2 | ⊢ ( 𝐹  =  ℎ  →  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) ) | 
						
							| 51 | 49 50 | jca | ⊢ ( 𝐹  =  ℎ  →  ( ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) ) ) | 
						
							| 52 | 51 | eqcoms | ⊢ ( ℎ  =  𝐹  →  ( ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) ) ) | 
						
							| 53 | 52 | biantrud | ⊢ ( ℎ  =  𝐹  →  ( ℎ : 𝑊 ⟶ 𝑍  ↔  ( ℎ : 𝑊 ⟶ 𝑍  ∧  ( ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) ) ) ) ) | 
						
							| 54 |  | feq1 | ⊢ ( ℎ  =  𝐹  →  ( ℎ : 𝑊 ⟶ 𝑍  ↔  𝐹 : 𝑊 ⟶ 𝑍 ) ) | 
						
							| 55 | 53 54 | bitr3d | ⊢ ( ℎ  =  𝐹  →  ( ( ℎ : 𝑊 ⟶ 𝑍  ∧  ( ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) ) )  ↔  𝐹 : 𝑊 ⟶ 𝑍 ) ) | 
						
							| 56 | 48 55 | bitrid | ⊢ ( ℎ  =  𝐹  →  ( ( ℎ : 𝑊 ⟶ 𝑍  ∧  ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) )  ↔  𝐹 : 𝑊 ⟶ 𝑍 ) ) | 
						
							| 57 | 56 | moi2 | ⊢ ( ( ( 𝐹  ∈  V  ∧  ∃* ℎ ( ℎ : 𝑊 ⟶ 𝑍  ∧  ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) ) )  ∧  ( ( ℎ : 𝑊 ⟶ 𝑍  ∧  ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) )  ∧  𝐹 : 𝑊 ⟶ 𝑍 ) )  →  ℎ  =  𝐹 ) | 
						
							| 58 | 43 46 47 41 57 | syl22anc | ⊢ ( ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top  ∧  𝐹 : 𝑊 ⟶ 𝑍 )  ∧  ( ( 𝑃  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑅 )  ∧  ( 𝑄  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑆 ) ) )  ∧  ( ℎ : 𝑊 ⟶ 𝑍  ∧  ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) ) )  →  ℎ  =  𝐹 ) | 
						
							| 59 |  | eqid | ⊢ ( 𝑅  ×t  𝑆 )  =  ( 𝑅  ×t  𝑆 ) | 
						
							| 60 | 59 1 2 3 5 6 | uptx | ⊢ ( ( ( 𝑃  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑅 )  ∧  ( 𝑄  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑆 ) )  →  ∃! ℎ  ∈  ( 𝑈  Cn  ( 𝑅  ×t  𝑆 ) ) ( ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) ) ) | 
						
							| 61 | 60 | adantl | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top  ∧  𝐹 : 𝑊 ⟶ 𝑍 )  ∧  ( ( 𝑃  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑅 )  ∧  ( 𝑄  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑆 ) ) )  →  ∃! ℎ  ∈  ( 𝑈  Cn  ( 𝑅  ×t  𝑆 ) ) ( ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) ) ) | 
						
							| 62 |  | df-reu | ⊢ ( ∃! ℎ  ∈  ( 𝑈  Cn  ( 𝑅  ×t  𝑆 ) ) ( ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) )  ↔  ∃! ℎ ( ℎ  ∈  ( 𝑈  Cn  ( 𝑅  ×t  𝑆 ) )  ∧  ( ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) ) ) ) | 
						
							| 63 |  | euex | ⊢ ( ∃! ℎ ( ℎ  ∈  ( 𝑈  Cn  ( 𝑅  ×t  𝑆 ) )  ∧  ( ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) ) )  →  ∃ ℎ ( ℎ  ∈  ( 𝑈  Cn  ( 𝑅  ×t  𝑆 ) )  ∧  ( ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) ) ) ) | 
						
							| 64 | 62 63 | sylbi | ⊢ ( ∃! ℎ  ∈  ( 𝑈  Cn  ( 𝑅  ×t  𝑆 ) ) ( ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) )  →  ∃ ℎ ( ℎ  ∈  ( 𝑈  Cn  ( 𝑅  ×t  𝑆 ) )  ∧  ( ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) ) ) ) | 
						
							| 65 |  | eqid | ⊢ ∪  ( 𝑅  ×t  𝑆 )  =  ∪  ( 𝑅  ×t  𝑆 ) | 
						
							| 66 | 4 65 | cnf | ⊢ ( ℎ  ∈  ( 𝑈  Cn  ( 𝑅  ×t  𝑆 ) )  →  ℎ : 𝑊 ⟶ ∪  ( 𝑅  ×t  𝑆 ) ) | 
						
							| 67 | 1 2 | txuni | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  ( 𝑋  ×  𝑌 )  =  ∪  ( 𝑅  ×t  𝑆 ) ) | 
						
							| 68 | 3 67 | eqtrid | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  𝑍  =  ∪  ( 𝑅  ×t  𝑆 ) ) | 
						
							| 69 | 68 | 3adant3 | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top  ∧  𝐹 : 𝑊 ⟶ 𝑍 )  →  𝑍  =  ∪  ( 𝑅  ×t  𝑆 ) ) | 
						
							| 70 | 69 | adantr | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top  ∧  𝐹 : 𝑊 ⟶ 𝑍 )  ∧  ( ( 𝑃  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑅 )  ∧  ( 𝑄  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑆 ) ) )  →  𝑍  =  ∪  ( 𝑅  ×t  𝑆 ) ) | 
						
							| 71 | 70 | feq3d | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top  ∧  𝐹 : 𝑊 ⟶ 𝑍 )  ∧  ( ( 𝑃  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑅 )  ∧  ( 𝑄  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑆 ) ) )  →  ( ℎ : 𝑊 ⟶ 𝑍  ↔  ℎ : 𝑊 ⟶ ∪  ( 𝑅  ×t  𝑆 ) ) ) | 
						
							| 72 | 66 71 | imbitrrid | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top  ∧  𝐹 : 𝑊 ⟶ 𝑍 )  ∧  ( ( 𝑃  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑅 )  ∧  ( 𝑄  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑆 ) ) )  →  ( ℎ  ∈  ( 𝑈  Cn  ( 𝑅  ×t  𝑆 ) )  →  ℎ : 𝑊 ⟶ 𝑍 ) ) | 
						
							| 73 | 72 | anim1d | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top  ∧  𝐹 : 𝑊 ⟶ 𝑍 )  ∧  ( ( 𝑃  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑅 )  ∧  ( 𝑄  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑆 ) ) )  →  ( ( ℎ  ∈  ( 𝑈  Cn  ( 𝑅  ×t  𝑆 ) )  ∧  ( ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) ) )  →  ( ℎ : 𝑊 ⟶ 𝑍  ∧  ( ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) ) ) ) ) | 
						
							| 74 | 73 48 | imbitrrdi | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top  ∧  𝐹 : 𝑊 ⟶ 𝑍 )  ∧  ( ( 𝑃  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑅 )  ∧  ( 𝑄  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑆 ) ) )  →  ( ( ℎ  ∈  ( 𝑈  Cn  ( 𝑅  ×t  𝑆 ) )  ∧  ( ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) ) )  →  ( ℎ : 𝑊 ⟶ 𝑍  ∧  ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) ) ) ) | 
						
							| 75 |  | simpl | ⊢ ( ( ℎ  ∈  ( 𝑈  Cn  ( 𝑅  ×t  𝑆 ) )  ∧  ( ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) ) )  →  ℎ  ∈  ( 𝑈  Cn  ( 𝑅  ×t  𝑆 ) ) ) | 
						
							| 76 | 74 75 | jca2 | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top  ∧  𝐹 : 𝑊 ⟶ 𝑍 )  ∧  ( ( 𝑃  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑅 )  ∧  ( 𝑄  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑆 ) ) )  →  ( ( ℎ  ∈  ( 𝑈  Cn  ( 𝑅  ×t  𝑆 ) )  ∧  ( ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) ) )  →  ( ( ℎ : 𝑊 ⟶ 𝑍  ∧  ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) )  ∧  ℎ  ∈  ( 𝑈  Cn  ( 𝑅  ×t  𝑆 ) ) ) ) ) | 
						
							| 77 | 76 | eximdv | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top  ∧  𝐹 : 𝑊 ⟶ 𝑍 )  ∧  ( ( 𝑃  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑅 )  ∧  ( 𝑄  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑆 ) ) )  →  ( ∃ ℎ ( ℎ  ∈  ( 𝑈  Cn  ( 𝑅  ×t  𝑆 ) )  ∧  ( ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) ) )  →  ∃ ℎ ( ( ℎ : 𝑊 ⟶ 𝑍  ∧  ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) )  ∧  ℎ  ∈  ( 𝑈  Cn  ( 𝑅  ×t  𝑆 ) ) ) ) ) | 
						
							| 78 | 64 77 | syl5 | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top  ∧  𝐹 : 𝑊 ⟶ 𝑍 )  ∧  ( ( 𝑃  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑅 )  ∧  ( 𝑄  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑆 ) ) )  →  ( ∃! ℎ  ∈  ( 𝑈  Cn  ( 𝑅  ×t  𝑆 ) ) ( ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) )  →  ∃ ℎ ( ( ℎ : 𝑊 ⟶ 𝑍  ∧  ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) )  ∧  ℎ  ∈  ( 𝑈  Cn  ( 𝑅  ×t  𝑆 ) ) ) ) ) | 
						
							| 79 | 61 78 | mpd | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top  ∧  𝐹 : 𝑊 ⟶ 𝑍 )  ∧  ( ( 𝑃  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑅 )  ∧  ( 𝑄  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑆 ) ) )  →  ∃ ℎ ( ( ℎ : 𝑊 ⟶ 𝑍  ∧  ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) )  ∧  ℎ  ∈  ( 𝑈  Cn  ( 𝑅  ×t  𝑆 ) ) ) ) | 
						
							| 80 |  | eupick | ⊢ ( ( ∃! ℎ ( ℎ : 𝑊 ⟶ 𝑍  ∧  ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) )  ∧  ∃ ℎ ( ( ℎ : 𝑊 ⟶ 𝑍  ∧  ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) )  ∧  ℎ  ∈  ( 𝑈  Cn  ( 𝑅  ×t  𝑆 ) ) ) )  →  ( ( ℎ : 𝑊 ⟶ 𝑍  ∧  ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) )  →  ℎ  ∈  ( 𝑈  Cn  ( 𝑅  ×t  𝑆 ) ) ) ) | 
						
							| 81 | 38 79 80 | syl2anc | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top  ∧  𝐹 : 𝑊 ⟶ 𝑍 )  ∧  ( ( 𝑃  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑅 )  ∧  ( 𝑄  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑆 ) ) )  →  ( ( ℎ : 𝑊 ⟶ 𝑍  ∧  ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) )  →  ℎ  ∈  ( 𝑈  Cn  ( 𝑅  ×t  𝑆 ) ) ) ) | 
						
							| 82 | 81 | imp | ⊢ ( ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top  ∧  𝐹 : 𝑊 ⟶ 𝑍 )  ∧  ( ( 𝑃  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑅 )  ∧  ( 𝑄  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑆 ) ) )  ∧  ( ℎ : 𝑊 ⟶ 𝑍  ∧  ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) ) )  →  ℎ  ∈  ( 𝑈  Cn  ( 𝑅  ×t  𝑆 ) ) ) | 
						
							| 83 | 58 82 | eqeltrrd | ⊢ ( ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top  ∧  𝐹 : 𝑊 ⟶ 𝑍 )  ∧  ( ( 𝑃  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑅 )  ∧  ( 𝑄  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑆 ) ) )  ∧  ( ℎ : 𝑊 ⟶ 𝑍  ∧  ( 𝑃  ∘  𝐹 )  =  ( 𝑃  ∘  ℎ )  ∧  ( 𝑄  ∘  𝐹 )  =  ( 𝑄  ∘  ℎ ) ) )  →  𝐹  ∈  ( 𝑈  Cn  ( 𝑅  ×t  𝑆 ) ) ) | 
						
							| 84 | 40 83 | exlimddv | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top  ∧  𝐹 : 𝑊 ⟶ 𝑍 )  ∧  ( ( 𝑃  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑅 )  ∧  ( 𝑄  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑆 ) ) )  →  𝐹  ∈  ( 𝑈  Cn  ( 𝑅  ×t  𝑆 ) ) ) | 
						
							| 85 | 84 | ex | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top  ∧  𝐹 : 𝑊 ⟶ 𝑍 )  →  ( ( ( 𝑃  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑅 )  ∧  ( 𝑄  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑆 ) )  →  𝐹  ∈  ( 𝑈  Cn  ( 𝑅  ×t  𝑆 ) ) ) ) | 
						
							| 86 | 23 85 | impbid | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top  ∧  𝐹 : 𝑊 ⟶ 𝑍 )  →  ( 𝐹  ∈  ( 𝑈  Cn  ( 𝑅  ×t  𝑆 ) )  ↔  ( ( 𝑃  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑅 )  ∧  ( 𝑄  ∘  𝐹 )  ∈  ( 𝑈  Cn  𝑆 ) ) ) ) |