Step |
Hyp |
Ref |
Expression |
1 |
|
txcnmpt.1 |
⊢ 𝑊 = ∪ 𝑈 |
2 |
|
txcnmpt.2 |
⊢ 𝐻 = ( 𝑥 ∈ 𝑊 ↦ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ) |
3 |
|
eqid |
⊢ ∪ 𝑅 = ∪ 𝑅 |
4 |
1 3
|
cnf |
⊢ ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) → 𝐹 : 𝑊 ⟶ ∪ 𝑅 ) |
5 |
4
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → 𝐹 : 𝑊 ⟶ ∪ 𝑅 ) |
6 |
5
|
ffvelrnda |
⊢ ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ 𝑥 ∈ 𝑊 ) → ( 𝐹 ‘ 𝑥 ) ∈ ∪ 𝑅 ) |
7 |
|
eqid |
⊢ ∪ 𝑆 = ∪ 𝑆 |
8 |
1 7
|
cnf |
⊢ ( 𝐺 ∈ ( 𝑈 Cn 𝑆 ) → 𝐺 : 𝑊 ⟶ ∪ 𝑆 ) |
9 |
8
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → 𝐺 : 𝑊 ⟶ ∪ 𝑆 ) |
10 |
9
|
ffvelrnda |
⊢ ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ 𝑥 ∈ 𝑊 ) → ( 𝐺 ‘ 𝑥 ) ∈ ∪ 𝑆 ) |
11 |
6 10
|
opelxpd |
⊢ ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ 𝑥 ∈ 𝑊 ) → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) |
12 |
11 2
|
fmptd |
⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → 𝐻 : 𝑊 ⟶ ( ∪ 𝑅 × ∪ 𝑆 ) ) |
13 |
2
|
mptpreima |
⊢ ( ◡ 𝐻 “ ( 𝑟 × 𝑠 ) ) = { 𝑥 ∈ 𝑊 ∣ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ∈ ( 𝑟 × 𝑠 ) } |
14 |
5
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝐹 : 𝑊 ⟶ ∪ 𝑅 ) |
15 |
14
|
adantr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑊 ) → 𝐹 : 𝑊 ⟶ ∪ 𝑅 ) |
16 |
|
ffn |
⊢ ( 𝐹 : 𝑊 ⟶ ∪ 𝑅 → 𝐹 Fn 𝑊 ) |
17 |
|
elpreima |
⊢ ( 𝐹 Fn 𝑊 → ( 𝑥 ∈ ( ◡ 𝐹 “ 𝑟 ) ↔ ( 𝑥 ∈ 𝑊 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑟 ) ) ) |
18 |
15 16 17
|
3syl |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑊 ) → ( 𝑥 ∈ ( ◡ 𝐹 “ 𝑟 ) ↔ ( 𝑥 ∈ 𝑊 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑟 ) ) ) |
19 |
|
ibar |
⊢ ( 𝑥 ∈ 𝑊 → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝑟 ↔ ( 𝑥 ∈ 𝑊 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑟 ) ) ) |
20 |
19
|
adantl |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑊 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝑟 ↔ ( 𝑥 ∈ 𝑊 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑟 ) ) ) |
21 |
18 20
|
bitr4d |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑊 ) → ( 𝑥 ∈ ( ◡ 𝐹 “ 𝑟 ) ↔ ( 𝐹 ‘ 𝑥 ) ∈ 𝑟 ) ) |
22 |
9
|
ad2antrr |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑊 ) → 𝐺 : 𝑊 ⟶ ∪ 𝑆 ) |
23 |
|
ffn |
⊢ ( 𝐺 : 𝑊 ⟶ ∪ 𝑆 → 𝐺 Fn 𝑊 ) |
24 |
|
elpreima |
⊢ ( 𝐺 Fn 𝑊 → ( 𝑥 ∈ ( ◡ 𝐺 “ 𝑠 ) ↔ ( 𝑥 ∈ 𝑊 ∧ ( 𝐺 ‘ 𝑥 ) ∈ 𝑠 ) ) ) |
25 |
22 23 24
|
3syl |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑊 ) → ( 𝑥 ∈ ( ◡ 𝐺 “ 𝑠 ) ↔ ( 𝑥 ∈ 𝑊 ∧ ( 𝐺 ‘ 𝑥 ) ∈ 𝑠 ) ) ) |
26 |
|
ibar |
⊢ ( 𝑥 ∈ 𝑊 → ( ( 𝐺 ‘ 𝑥 ) ∈ 𝑠 ↔ ( 𝑥 ∈ 𝑊 ∧ ( 𝐺 ‘ 𝑥 ) ∈ 𝑠 ) ) ) |
27 |
26
|
adantl |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑊 ) → ( ( 𝐺 ‘ 𝑥 ) ∈ 𝑠 ↔ ( 𝑥 ∈ 𝑊 ∧ ( 𝐺 ‘ 𝑥 ) ∈ 𝑠 ) ) ) |
28 |
25 27
|
bitr4d |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑊 ) → ( 𝑥 ∈ ( ◡ 𝐺 “ 𝑠 ) ↔ ( 𝐺 ‘ 𝑥 ) ∈ 𝑠 ) ) |
29 |
21 28
|
anbi12d |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑊 ) → ( ( 𝑥 ∈ ( ◡ 𝐹 “ 𝑟 ) ∧ 𝑥 ∈ ( ◡ 𝐺 “ 𝑠 ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝑟 ∧ ( 𝐺 ‘ 𝑥 ) ∈ 𝑠 ) ) ) |
30 |
|
elin |
⊢ ( 𝑥 ∈ ( ( ◡ 𝐹 “ 𝑟 ) ∩ ( ◡ 𝐺 “ 𝑠 ) ) ↔ ( 𝑥 ∈ ( ◡ 𝐹 “ 𝑟 ) ∧ 𝑥 ∈ ( ◡ 𝐺 “ 𝑠 ) ) ) |
31 |
|
opelxp |
⊢ ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ∈ ( 𝑟 × 𝑠 ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝑟 ∧ ( 𝐺 ‘ 𝑥 ) ∈ 𝑠 ) ) |
32 |
29 30 31
|
3bitr4g |
⊢ ( ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ 𝑥 ∈ 𝑊 ) → ( 𝑥 ∈ ( ( ◡ 𝐹 “ 𝑟 ) ∩ ( ◡ 𝐺 “ 𝑠 ) ) ↔ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ∈ ( 𝑟 × 𝑠 ) ) ) |
33 |
32
|
rabbi2dva |
⊢ ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( 𝑊 ∩ ( ( ◡ 𝐹 “ 𝑟 ) ∩ ( ◡ 𝐺 “ 𝑠 ) ) ) = { 𝑥 ∈ 𝑊 ∣ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ∈ ( 𝑟 × 𝑠 ) } ) |
34 |
|
inss1 |
⊢ ( ( ◡ 𝐹 “ 𝑟 ) ∩ ( ◡ 𝐺 “ 𝑠 ) ) ⊆ ( ◡ 𝐹 “ 𝑟 ) |
35 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ 𝑟 ) ⊆ dom 𝐹 |
36 |
34 35
|
sstri |
⊢ ( ( ◡ 𝐹 “ 𝑟 ) ∩ ( ◡ 𝐺 “ 𝑠 ) ) ⊆ dom 𝐹 |
37 |
36 14
|
fssdm |
⊢ ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( ◡ 𝐹 “ 𝑟 ) ∩ ( ◡ 𝐺 “ 𝑠 ) ) ⊆ 𝑊 ) |
38 |
|
sseqin2 |
⊢ ( ( ( ◡ 𝐹 “ 𝑟 ) ∩ ( ◡ 𝐺 “ 𝑠 ) ) ⊆ 𝑊 ↔ ( 𝑊 ∩ ( ( ◡ 𝐹 “ 𝑟 ) ∩ ( ◡ 𝐺 “ 𝑠 ) ) ) = ( ( ◡ 𝐹 “ 𝑟 ) ∩ ( ◡ 𝐺 “ 𝑠 ) ) ) |
39 |
37 38
|
sylib |
⊢ ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( 𝑊 ∩ ( ( ◡ 𝐹 “ 𝑟 ) ∩ ( ◡ 𝐺 “ 𝑠 ) ) ) = ( ( ◡ 𝐹 “ 𝑟 ) ∩ ( ◡ 𝐺 “ 𝑠 ) ) ) |
40 |
33 39
|
eqtr3d |
⊢ ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → { 𝑥 ∈ 𝑊 ∣ 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐺 ‘ 𝑥 ) 〉 ∈ ( 𝑟 × 𝑠 ) } = ( ( ◡ 𝐹 “ 𝑟 ) ∩ ( ◡ 𝐺 “ 𝑠 ) ) ) |
41 |
13 40
|
syl5eq |
⊢ ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ◡ 𝐻 “ ( 𝑟 × 𝑠 ) ) = ( ( ◡ 𝐹 “ 𝑟 ) ∩ ( ◡ 𝐺 “ 𝑠 ) ) ) |
42 |
|
cntop1 |
⊢ ( 𝐺 ∈ ( 𝑈 Cn 𝑆 ) → 𝑈 ∈ Top ) |
43 |
42
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → 𝑈 ∈ Top ) |
44 |
43
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝑈 ∈ Top ) |
45 |
|
cnima |
⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝑟 ∈ 𝑅 ) → ( ◡ 𝐹 “ 𝑟 ) ∈ 𝑈 ) |
46 |
45
|
ad2ant2r |
⊢ ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ◡ 𝐹 “ 𝑟 ) ∈ 𝑈 ) |
47 |
|
cnima |
⊢ ( ( 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ∧ 𝑠 ∈ 𝑆 ) → ( ◡ 𝐺 “ 𝑠 ) ∈ 𝑈 ) |
48 |
47
|
ad2ant2l |
⊢ ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ◡ 𝐺 “ 𝑠 ) ∈ 𝑈 ) |
49 |
|
inopn |
⊢ ( ( 𝑈 ∈ Top ∧ ( ◡ 𝐹 “ 𝑟 ) ∈ 𝑈 ∧ ( ◡ 𝐺 “ 𝑠 ) ∈ 𝑈 ) → ( ( ◡ 𝐹 “ 𝑟 ) ∩ ( ◡ 𝐺 “ 𝑠 ) ) ∈ 𝑈 ) |
50 |
44 46 48 49
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( ◡ 𝐹 “ 𝑟 ) ∩ ( ◡ 𝐺 “ 𝑠 ) ) ∈ 𝑈 ) |
51 |
41 50
|
eqeltrd |
⊢ ( ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ◡ 𝐻 “ ( 𝑟 × 𝑠 ) ) ∈ 𝑈 ) |
52 |
51
|
ralrimivva |
⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → ∀ 𝑟 ∈ 𝑅 ∀ 𝑠 ∈ 𝑆 ( ◡ 𝐻 “ ( 𝑟 × 𝑠 ) ) ∈ 𝑈 ) |
53 |
|
vex |
⊢ 𝑟 ∈ V |
54 |
|
vex |
⊢ 𝑠 ∈ V |
55 |
53 54
|
xpex |
⊢ ( 𝑟 × 𝑠 ) ∈ V |
56 |
55
|
rgen2w |
⊢ ∀ 𝑟 ∈ 𝑅 ∀ 𝑠 ∈ 𝑆 ( 𝑟 × 𝑠 ) ∈ V |
57 |
|
eqid |
⊢ ( 𝑟 ∈ 𝑅 , 𝑠 ∈ 𝑆 ↦ ( 𝑟 × 𝑠 ) ) = ( 𝑟 ∈ 𝑅 , 𝑠 ∈ 𝑆 ↦ ( 𝑟 × 𝑠 ) ) |
58 |
|
imaeq2 |
⊢ ( 𝑧 = ( 𝑟 × 𝑠 ) → ( ◡ 𝐻 “ 𝑧 ) = ( ◡ 𝐻 “ ( 𝑟 × 𝑠 ) ) ) |
59 |
58
|
eleq1d |
⊢ ( 𝑧 = ( 𝑟 × 𝑠 ) → ( ( ◡ 𝐻 “ 𝑧 ) ∈ 𝑈 ↔ ( ◡ 𝐻 “ ( 𝑟 × 𝑠 ) ) ∈ 𝑈 ) ) |
60 |
57 59
|
ralrnmpo |
⊢ ( ∀ 𝑟 ∈ 𝑅 ∀ 𝑠 ∈ 𝑆 ( 𝑟 × 𝑠 ) ∈ V → ( ∀ 𝑧 ∈ ran ( 𝑟 ∈ 𝑅 , 𝑠 ∈ 𝑆 ↦ ( 𝑟 × 𝑠 ) ) ( ◡ 𝐻 “ 𝑧 ) ∈ 𝑈 ↔ ∀ 𝑟 ∈ 𝑅 ∀ 𝑠 ∈ 𝑆 ( ◡ 𝐻 “ ( 𝑟 × 𝑠 ) ) ∈ 𝑈 ) ) |
61 |
56 60
|
ax-mp |
⊢ ( ∀ 𝑧 ∈ ran ( 𝑟 ∈ 𝑅 , 𝑠 ∈ 𝑆 ↦ ( 𝑟 × 𝑠 ) ) ( ◡ 𝐻 “ 𝑧 ) ∈ 𝑈 ↔ ∀ 𝑟 ∈ 𝑅 ∀ 𝑠 ∈ 𝑆 ( ◡ 𝐻 “ ( 𝑟 × 𝑠 ) ) ∈ 𝑈 ) |
62 |
52 61
|
sylibr |
⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → ∀ 𝑧 ∈ ran ( 𝑟 ∈ 𝑅 , 𝑠 ∈ 𝑆 ↦ ( 𝑟 × 𝑠 ) ) ( ◡ 𝐻 “ 𝑧 ) ∈ 𝑈 ) |
63 |
1
|
toptopon |
⊢ ( 𝑈 ∈ Top ↔ 𝑈 ∈ ( TopOn ‘ 𝑊 ) ) |
64 |
43 63
|
sylib |
⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → 𝑈 ∈ ( TopOn ‘ 𝑊 ) ) |
65 |
|
cntop2 |
⊢ ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) → 𝑅 ∈ Top ) |
66 |
|
cntop2 |
⊢ ( 𝐺 ∈ ( 𝑈 Cn 𝑆 ) → 𝑆 ∈ Top ) |
67 |
|
eqid |
⊢ ran ( 𝑟 ∈ 𝑅 , 𝑠 ∈ 𝑆 ↦ ( 𝑟 × 𝑠 ) ) = ran ( 𝑟 ∈ 𝑅 , 𝑠 ∈ 𝑆 ↦ ( 𝑟 × 𝑠 ) ) |
68 |
67
|
txval |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 ×t 𝑆 ) = ( topGen ‘ ran ( 𝑟 ∈ 𝑅 , 𝑠 ∈ 𝑆 ↦ ( 𝑟 × 𝑠 ) ) ) ) |
69 |
65 66 68
|
syl2an |
⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → ( 𝑅 ×t 𝑆 ) = ( topGen ‘ ran ( 𝑟 ∈ 𝑅 , 𝑠 ∈ 𝑆 ↦ ( 𝑟 × 𝑠 ) ) ) ) |
70 |
|
toptopon2 |
⊢ ( 𝑅 ∈ Top ↔ 𝑅 ∈ ( TopOn ‘ ∪ 𝑅 ) ) |
71 |
65 70
|
sylib |
⊢ ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) → 𝑅 ∈ ( TopOn ‘ ∪ 𝑅 ) ) |
72 |
|
toptopon2 |
⊢ ( 𝑆 ∈ Top ↔ 𝑆 ∈ ( TopOn ‘ ∪ 𝑆 ) ) |
73 |
66 72
|
sylib |
⊢ ( 𝐺 ∈ ( 𝑈 Cn 𝑆 ) → 𝑆 ∈ ( TopOn ‘ ∪ 𝑆 ) ) |
74 |
|
txtopon |
⊢ ( ( 𝑅 ∈ ( TopOn ‘ ∪ 𝑅 ) ∧ 𝑆 ∈ ( TopOn ‘ ∪ 𝑆 ) ) → ( 𝑅 ×t 𝑆 ) ∈ ( TopOn ‘ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) |
75 |
71 73 74
|
syl2an |
⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → ( 𝑅 ×t 𝑆 ) ∈ ( TopOn ‘ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) |
76 |
64 69 75
|
tgcn |
⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → ( 𝐻 ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ↔ ( 𝐻 : 𝑊 ⟶ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ ∀ 𝑧 ∈ ran ( 𝑟 ∈ 𝑅 , 𝑠 ∈ 𝑆 ↦ ( 𝑟 × 𝑠 ) ) ( ◡ 𝐻 “ 𝑧 ) ∈ 𝑈 ) ) ) |
77 |
12 62 76
|
mpbir2and |
⊢ ( ( 𝐹 ∈ ( 𝑈 Cn 𝑅 ) ∧ 𝐺 ∈ ( 𝑈 Cn 𝑆 ) ) → 𝐻 ∈ ( 𝑈 Cn ( 𝑅 ×t 𝑆 ) ) ) |