| Step | Hyp | Ref | Expression | 
						
							| 1 |  | txcnp.4 | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 2 |  | txcnp.5 | ⊢ ( 𝜑  →  𝐾  ∈  ( TopOn ‘ 𝑌 ) ) | 
						
							| 3 |  | txcnp.6 | ⊢ ( 𝜑  →  𝐿  ∈  ( TopOn ‘ 𝑍 ) ) | 
						
							| 4 |  | txcnp.7 | ⊢ ( 𝜑  →  𝐷  ∈  𝑋 ) | 
						
							| 5 |  | txcnp.8 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  𝐴 )  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝐷 ) ) | 
						
							| 6 |  | txcnp.9 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  𝐵 )  ∈  ( ( 𝐽  CnP  𝐿 ) ‘ 𝐷 ) ) | 
						
							| 7 |  | cnpf2 | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 )  ∧  ( 𝑥  ∈  𝑋  ↦  𝐴 )  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝐷 ) )  →  ( 𝑥  ∈  𝑋  ↦  𝐴 ) : 𝑋 ⟶ 𝑌 ) | 
						
							| 8 | 1 2 5 7 | syl3anc | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  𝐴 ) : 𝑋 ⟶ 𝑌 ) | 
						
							| 9 | 8 | fvmptelcdm | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐴  ∈  𝑌 ) | 
						
							| 10 |  | cnpf2 | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐿  ∈  ( TopOn ‘ 𝑍 )  ∧  ( 𝑥  ∈  𝑋  ↦  𝐵 )  ∈  ( ( 𝐽  CnP  𝐿 ) ‘ 𝐷 ) )  →  ( 𝑥  ∈  𝑋  ↦  𝐵 ) : 𝑋 ⟶ 𝑍 ) | 
						
							| 11 | 1 3 6 10 | syl3anc | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  𝐵 ) : 𝑋 ⟶ 𝑍 ) | 
						
							| 12 | 11 | fvmptelcdm | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐵  ∈  𝑍 ) | 
						
							| 13 | 9 12 | opelxpd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  〈 𝐴 ,  𝐵 〉  ∈  ( 𝑌  ×  𝑍 ) ) | 
						
							| 14 | 13 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) : 𝑋 ⟶ ( 𝑌  ×  𝑍 ) ) | 
						
							| 15 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝑥  ∈  𝑋 ) | 
						
							| 16 |  | opex | ⊢ 〈 𝐴 ,  𝐵 〉  ∈  V | 
						
							| 17 |  | eqid | ⊢ ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  =  ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) | 
						
							| 18 | 17 | fvmpt2 | ⊢ ( ( 𝑥  ∈  𝑋  ∧  〈 𝐴 ,  𝐵 〉  ∈  V )  →  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ‘ 𝑥 )  =  〈 𝐴 ,  𝐵 〉 ) | 
						
							| 19 | 15 16 18 | sylancl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ‘ 𝑥 )  =  〈 𝐴 ,  𝐵 〉 ) | 
						
							| 20 |  | eqid | ⊢ ( 𝑥  ∈  𝑋  ↦  𝐴 )  =  ( 𝑥  ∈  𝑋  ↦  𝐴 ) | 
						
							| 21 | 20 | fvmpt2 | ⊢ ( ( 𝑥  ∈  𝑋  ∧  𝐴  ∈  𝑌 )  →  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 )  =  𝐴 ) | 
						
							| 22 | 15 9 21 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 )  =  𝐴 ) | 
						
							| 23 |  | eqid | ⊢ ( 𝑥  ∈  𝑋  ↦  𝐵 )  =  ( 𝑥  ∈  𝑋  ↦  𝐵 ) | 
						
							| 24 | 23 | fvmpt2 | ⊢ ( ( 𝑥  ∈  𝑋  ∧  𝐵  ∈  𝑍 )  →  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝑥 )  =  𝐵 ) | 
						
							| 25 | 15 12 24 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝑥 )  =  𝐵 ) | 
						
							| 26 | 22 25 | opeq12d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  〈 ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 ) ,  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝑥 ) 〉  =  〈 𝐴 ,  𝐵 〉 ) | 
						
							| 27 | 19 26 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ‘ 𝑥 )  =  〈 ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 ) ,  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝑥 ) 〉 ) | 
						
							| 28 | 27 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑋 ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ‘ 𝑥 )  =  〈 ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 ) ,  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝑥 ) 〉 ) | 
						
							| 29 |  | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ‘ 𝐷 ) | 
						
							| 30 |  | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝐷 ) | 
						
							| 31 |  | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝐷 ) | 
						
							| 32 | 30 31 | nfop | ⊢ Ⅎ 𝑥 〈 ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝐷 ) ,  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝐷 ) 〉 | 
						
							| 33 | 29 32 | nfeq | ⊢ Ⅎ 𝑥 ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ‘ 𝐷 )  =  〈 ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝐷 ) ,  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝐷 ) 〉 | 
						
							| 34 |  | fveq2 | ⊢ ( 𝑥  =  𝐷  →  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ‘ 𝑥 )  =  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ‘ 𝐷 ) ) | 
						
							| 35 |  | fveq2 | ⊢ ( 𝑥  =  𝐷  →  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 )  =  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝐷 ) ) | 
						
							| 36 |  | fveq2 | ⊢ ( 𝑥  =  𝐷  →  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝑥 )  =  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝐷 ) ) | 
						
							| 37 | 35 36 | opeq12d | ⊢ ( 𝑥  =  𝐷  →  〈 ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 ) ,  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝑥 ) 〉  =  〈 ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝐷 ) ,  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝐷 ) 〉 ) | 
						
							| 38 | 34 37 | eqeq12d | ⊢ ( 𝑥  =  𝐷  →  ( ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ‘ 𝑥 )  =  〈 ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 ) ,  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝑥 ) 〉  ↔  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ‘ 𝐷 )  =  〈 ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝐷 ) ,  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝐷 ) 〉 ) ) | 
						
							| 39 | 33 38 | rspc | ⊢ ( 𝐷  ∈  𝑋  →  ( ∀ 𝑥  ∈  𝑋 ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ‘ 𝑥 )  =  〈 ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 ) ,  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝑥 ) 〉  →  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ‘ 𝐷 )  =  〈 ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝐷 ) ,  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝐷 ) 〉 ) ) | 
						
							| 40 | 4 28 39 | sylc | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ‘ 𝐷 )  =  〈 ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝐷 ) ,  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝐷 ) 〉 ) | 
						
							| 41 | 40 | eleq1d | ⊢ ( 𝜑  →  ( ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ‘ 𝐷 )  ∈  ( 𝑣  ×  𝑤 )  ↔  〈 ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝐷 ) ,  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝐷 ) 〉  ∈  ( 𝑣  ×  𝑤 ) ) ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝐾  ∧  𝑤  ∈  𝐿 ) )  →  ( ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ‘ 𝐷 )  ∈  ( 𝑣  ×  𝑤 )  ↔  〈 ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝐷 ) ,  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝐷 ) 〉  ∈  ( 𝑣  ×  𝑤 ) ) ) | 
						
							| 43 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑣  ∈  𝐾  ∧  𝑤  ∈  𝐿 ) )  ∧  ( ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝐷 )  ∈  𝑣  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝐷 )  ∈  𝑤 ) )  →  ( 𝑥  ∈  𝑋  ↦  𝐴 )  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝐷 ) ) | 
						
							| 44 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑣  ∈  𝐾  ∧  𝑤  ∈  𝐿 ) )  ∧  ( ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝐷 )  ∈  𝑣  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝐷 )  ∈  𝑤 ) )  →  𝑣  ∈  𝐾 ) | 
						
							| 45 |  | simprl | ⊢ ( ( ( 𝜑  ∧  ( 𝑣  ∈  𝐾  ∧  𝑤  ∈  𝐿 ) )  ∧  ( ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝐷 )  ∈  𝑣  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝐷 )  ∈  𝑤 ) )  →  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝐷 )  ∈  𝑣 ) | 
						
							| 46 |  | cnpimaex | ⊢ ( ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝐷 )  ∧  𝑣  ∈  𝐾  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝐷 )  ∈  𝑣 )  →  ∃ 𝑟  ∈  𝐽 ( 𝐷  ∈  𝑟  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑟 )  ⊆  𝑣 ) ) | 
						
							| 47 | 43 44 45 46 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑣  ∈  𝐾  ∧  𝑤  ∈  𝐿 ) )  ∧  ( ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝐷 )  ∈  𝑣  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝐷 )  ∈  𝑤 ) )  →  ∃ 𝑟  ∈  𝐽 ( 𝐷  ∈  𝑟  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑟 )  ⊆  𝑣 ) ) | 
						
							| 48 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑣  ∈  𝐾  ∧  𝑤  ∈  𝐿 ) )  ∧  ( ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝐷 )  ∈  𝑣  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝐷 )  ∈  𝑤 ) )  →  ( 𝑥  ∈  𝑋  ↦  𝐵 )  ∈  ( ( 𝐽  CnP  𝐿 ) ‘ 𝐷 ) ) | 
						
							| 49 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑣  ∈  𝐾  ∧  𝑤  ∈  𝐿 ) )  ∧  ( ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝐷 )  ∈  𝑣  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝐷 )  ∈  𝑤 ) )  →  𝑤  ∈  𝐿 ) | 
						
							| 50 |  | simprr | ⊢ ( ( ( 𝜑  ∧  ( 𝑣  ∈  𝐾  ∧  𝑤  ∈  𝐿 ) )  ∧  ( ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝐷 )  ∈  𝑣  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝐷 )  ∈  𝑤 ) )  →  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝐷 )  ∈  𝑤 ) | 
						
							| 51 |  | cnpimaex | ⊢ ( ( ( 𝑥  ∈  𝑋  ↦  𝐵 )  ∈  ( ( 𝐽  CnP  𝐿 ) ‘ 𝐷 )  ∧  𝑤  ∈  𝐿  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝐷 )  ∈  𝑤 )  →  ∃ 𝑠  ∈  𝐽 ( 𝐷  ∈  𝑠  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐵 )  “  𝑠 )  ⊆  𝑤 ) ) | 
						
							| 52 | 48 49 50 51 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑣  ∈  𝐾  ∧  𝑤  ∈  𝐿 ) )  ∧  ( ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝐷 )  ∈  𝑣  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝐷 )  ∈  𝑤 ) )  →  ∃ 𝑠  ∈  𝐽 ( 𝐷  ∈  𝑠  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐵 )  “  𝑠 )  ⊆  𝑤 ) ) | 
						
							| 53 | 47 52 | jca | ⊢ ( ( ( 𝜑  ∧  ( 𝑣  ∈  𝐾  ∧  𝑤  ∈  𝐿 ) )  ∧  ( ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝐷 )  ∈  𝑣  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝐷 )  ∈  𝑤 ) )  →  ( ∃ 𝑟  ∈  𝐽 ( 𝐷  ∈  𝑟  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑟 )  ⊆  𝑣 )  ∧  ∃ 𝑠  ∈  𝐽 ( 𝐷  ∈  𝑠  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐵 )  “  𝑠 )  ⊆  𝑤 ) ) ) | 
						
							| 54 | 53 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝐾  ∧  𝑤  ∈  𝐿 ) )  →  ( ( ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝐷 )  ∈  𝑣  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝐷 )  ∈  𝑤 )  →  ( ∃ 𝑟  ∈  𝐽 ( 𝐷  ∈  𝑟  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑟 )  ⊆  𝑣 )  ∧  ∃ 𝑠  ∈  𝐽 ( 𝐷  ∈  𝑠  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐵 )  “  𝑠 )  ⊆  𝑤 ) ) ) ) | 
						
							| 55 |  | opelxp | ⊢ ( 〈 ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝐷 ) ,  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝐷 ) 〉  ∈  ( 𝑣  ×  𝑤 )  ↔  ( ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝐷 )  ∈  𝑣  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝐷 )  ∈  𝑤 ) ) | 
						
							| 56 |  | reeanv | ⊢ ( ∃ 𝑟  ∈  𝐽 ∃ 𝑠  ∈  𝐽 ( ( 𝐷  ∈  𝑟  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑟 )  ⊆  𝑣 )  ∧  ( 𝐷  ∈  𝑠  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐵 )  “  𝑠 )  ⊆  𝑤 ) )  ↔  ( ∃ 𝑟  ∈  𝐽 ( 𝐷  ∈  𝑟  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑟 )  ⊆  𝑣 )  ∧  ∃ 𝑠  ∈  𝐽 ( 𝐷  ∈  𝑠  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐵 )  “  𝑠 )  ⊆  𝑤 ) ) ) | 
						
							| 57 | 54 55 56 | 3imtr4g | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝐾  ∧  𝑤  ∈  𝐿 ) )  →  ( 〈 ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝐷 ) ,  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝐷 ) 〉  ∈  ( 𝑣  ×  𝑤 )  →  ∃ 𝑟  ∈  𝐽 ∃ 𝑠  ∈  𝐽 ( ( 𝐷  ∈  𝑟  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑟 )  ⊆  𝑣 )  ∧  ( 𝐷  ∈  𝑠  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐵 )  “  𝑠 )  ⊆  𝑤 ) ) ) ) | 
						
							| 58 | 42 57 | sylbid | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝐾  ∧  𝑤  ∈  𝐿 ) )  →  ( ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ‘ 𝐷 )  ∈  ( 𝑣  ×  𝑤 )  →  ∃ 𝑟  ∈  𝐽 ∃ 𝑠  ∈  𝐽 ( ( 𝐷  ∈  𝑟  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑟 )  ⊆  𝑣 )  ∧  ( 𝐷  ∈  𝑠  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐵 )  “  𝑠 )  ⊆  𝑤 ) ) ) ) | 
						
							| 59 |  | an4 | ⊢ ( ( ( 𝐷  ∈  𝑟  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑟 )  ⊆  𝑣 )  ∧  ( 𝐷  ∈  𝑠  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐵 )  “  𝑠 )  ⊆  𝑤 ) )  ↔  ( ( 𝐷  ∈  𝑟  ∧  𝐷  ∈  𝑠 )  ∧  ( ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑟 )  ⊆  𝑣  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐵 )  “  𝑠 )  ⊆  𝑤 ) ) ) | 
						
							| 60 |  | elin | ⊢ ( 𝐷  ∈  ( 𝑟  ∩  𝑠 )  ↔  ( 𝐷  ∈  𝑟  ∧  𝐷  ∈  𝑠 ) ) | 
						
							| 61 | 60 | biimpri | ⊢ ( ( 𝐷  ∈  𝑟  ∧  𝐷  ∈  𝑠 )  →  𝐷  ∈  ( 𝑟  ∩  𝑠 ) ) | 
						
							| 62 | 61 | a1i | ⊢ ( ( ( 𝜑  ∧  ( 𝑣  ∈  𝐾  ∧  𝑤  ∈  𝐿 ) )  ∧  ( 𝑟  ∈  𝐽  ∧  𝑠  ∈  𝐽 ) )  →  ( ( 𝐷  ∈  𝑟  ∧  𝐷  ∈  𝑠 )  →  𝐷  ∈  ( 𝑟  ∩  𝑠 ) ) ) | 
						
							| 63 |  | simpl | ⊢ ( ( 𝑟  ∈  𝐽  ∧  𝑠  ∈  𝐽 )  →  𝑟  ∈  𝐽 ) | 
						
							| 64 |  | toponss | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑟  ∈  𝐽 )  →  𝑟  ⊆  𝑋 ) | 
						
							| 65 | 1 63 64 | syl2an | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝐽  ∧  𝑠  ∈  𝐽 ) )  →  𝑟  ⊆  𝑋 ) | 
						
							| 66 |  | ssinss1 | ⊢ ( 𝑟  ⊆  𝑋  →  ( 𝑟  ∩  𝑠 )  ⊆  𝑋 ) | 
						
							| 67 | 66 | adantl | ⊢ ( ( 𝜑  ∧  𝑟  ⊆  𝑋 )  →  ( 𝑟  ∩  𝑠 )  ⊆  𝑋 ) | 
						
							| 68 | 67 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑟  ⊆  𝑋 )  ∧  𝑡  ∈  ( 𝑟  ∩  𝑠 ) )  →  𝑡  ∈  𝑋 ) | 
						
							| 69 | 28 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑟  ⊆  𝑋 )  ∧  𝑡  ∈  ( 𝑟  ∩  𝑠 ) )  →  ∀ 𝑥  ∈  𝑋 ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ‘ 𝑥 )  =  〈 ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 ) ,  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝑥 ) 〉 ) | 
						
							| 70 |  | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ‘ 𝑡 ) | 
						
							| 71 |  | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑡 ) | 
						
							| 72 |  | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝑡 ) | 
						
							| 73 | 71 72 | nfop | ⊢ Ⅎ 𝑥 〈 ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑡 ) ,  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝑡 ) 〉 | 
						
							| 74 | 70 73 | nfeq | ⊢ Ⅎ 𝑥 ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ‘ 𝑡 )  =  〈 ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑡 ) ,  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝑡 ) 〉 | 
						
							| 75 |  | fveq2 | ⊢ ( 𝑥  =  𝑡  →  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ‘ 𝑥 )  =  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ‘ 𝑡 ) ) | 
						
							| 76 |  | fveq2 | ⊢ ( 𝑥  =  𝑡  →  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 )  =  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑡 ) ) | 
						
							| 77 |  | fveq2 | ⊢ ( 𝑥  =  𝑡  →  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝑥 )  =  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝑡 ) ) | 
						
							| 78 | 76 77 | opeq12d | ⊢ ( 𝑥  =  𝑡  →  〈 ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 ) ,  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝑥 ) 〉  =  〈 ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑡 ) ,  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝑡 ) 〉 ) | 
						
							| 79 | 75 78 | eqeq12d | ⊢ ( 𝑥  =  𝑡  →  ( ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ‘ 𝑥 )  =  〈 ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 ) ,  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝑥 ) 〉  ↔  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ‘ 𝑡 )  =  〈 ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑡 ) ,  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝑡 ) 〉 ) ) | 
						
							| 80 | 74 79 | rspc | ⊢ ( 𝑡  ∈  𝑋  →  ( ∀ 𝑥  ∈  𝑋 ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ‘ 𝑥 )  =  〈 ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑥 ) ,  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝑥 ) 〉  →  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ‘ 𝑡 )  =  〈 ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑡 ) ,  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝑡 ) 〉 ) ) | 
						
							| 81 | 68 69 80 | sylc | ⊢ ( ( ( 𝜑  ∧  𝑟  ⊆  𝑋 )  ∧  𝑡  ∈  ( 𝑟  ∩  𝑠 ) )  →  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ‘ 𝑡 )  =  〈 ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑡 ) ,  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝑡 ) 〉 ) | 
						
							| 82 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑟  ⊆  𝑋 )  ∧  𝑡  ∈  ( 𝑟  ∩  𝑠 ) )  →  𝑡  ∈  ( 𝑟  ∩  𝑠 ) ) | 
						
							| 83 | 82 | elin1d | ⊢ ( ( ( 𝜑  ∧  𝑟  ⊆  𝑋 )  ∧  𝑡  ∈  ( 𝑟  ∩  𝑠 ) )  →  𝑡  ∈  𝑟 ) | 
						
							| 84 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑟  ⊆  𝑋 )  ∧  𝑡  ∈  ( 𝑟  ∩  𝑠 ) )  →  ( 𝑥  ∈  𝑋  ↦  𝐴 ) : 𝑋 ⟶ 𝑌 ) | 
						
							| 85 | 84 | ffund | ⊢ ( ( ( 𝜑  ∧  𝑟  ⊆  𝑋 )  ∧  𝑡  ∈  ( 𝑟  ∩  𝑠 ) )  →  Fun  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) | 
						
							| 86 | 67 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑟  ⊆  𝑋 )  ∧  𝑡  ∈  ( 𝑟  ∩  𝑠 ) )  →  ( 𝑟  ∩  𝑠 )  ⊆  𝑋 ) | 
						
							| 87 | 84 | fdmd | ⊢ ( ( ( 𝜑  ∧  𝑟  ⊆  𝑋 )  ∧  𝑡  ∈  ( 𝑟  ∩  𝑠 ) )  →  dom  ( 𝑥  ∈  𝑋  ↦  𝐴 )  =  𝑋 ) | 
						
							| 88 | 86 87 | sseqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑟  ⊆  𝑋 )  ∧  𝑡  ∈  ( 𝑟  ∩  𝑠 ) )  →  ( 𝑟  ∩  𝑠 )  ⊆  dom  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) | 
						
							| 89 | 88 82 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑟  ⊆  𝑋 )  ∧  𝑡  ∈  ( 𝑟  ∩  𝑠 ) )  →  𝑡  ∈  dom  ( 𝑥  ∈  𝑋  ↦  𝐴 ) ) | 
						
							| 90 |  | funfvima | ⊢ ( ( Fun  ( 𝑥  ∈  𝑋  ↦  𝐴 )  ∧  𝑡  ∈  dom  ( 𝑥  ∈  𝑋  ↦  𝐴 ) )  →  ( 𝑡  ∈  𝑟  →  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑡 )  ∈  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑟 ) ) ) | 
						
							| 91 | 85 89 90 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑟  ⊆  𝑋 )  ∧  𝑡  ∈  ( 𝑟  ∩  𝑠 ) )  →  ( 𝑡  ∈  𝑟  →  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑡 )  ∈  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑟 ) ) ) | 
						
							| 92 | 83 91 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑟  ⊆  𝑋 )  ∧  𝑡  ∈  ( 𝑟  ∩  𝑠 ) )  →  ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑡 )  ∈  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑟 ) ) | 
						
							| 93 | 82 | elin2d | ⊢ ( ( ( 𝜑  ∧  𝑟  ⊆  𝑋 )  ∧  𝑡  ∈  ( 𝑟  ∩  𝑠 ) )  →  𝑡  ∈  𝑠 ) | 
						
							| 94 | 11 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑟  ⊆  𝑋 )  ∧  𝑡  ∈  ( 𝑟  ∩  𝑠 ) )  →  ( 𝑥  ∈  𝑋  ↦  𝐵 ) : 𝑋 ⟶ 𝑍 ) | 
						
							| 95 | 94 | ffund | ⊢ ( ( ( 𝜑  ∧  𝑟  ⊆  𝑋 )  ∧  𝑡  ∈  ( 𝑟  ∩  𝑠 ) )  →  Fun  ( 𝑥  ∈  𝑋  ↦  𝐵 ) ) | 
						
							| 96 | 94 | fdmd | ⊢ ( ( ( 𝜑  ∧  𝑟  ⊆  𝑋 )  ∧  𝑡  ∈  ( 𝑟  ∩  𝑠 ) )  →  dom  ( 𝑥  ∈  𝑋  ↦  𝐵 )  =  𝑋 ) | 
						
							| 97 | 86 96 | sseqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑟  ⊆  𝑋 )  ∧  𝑡  ∈  ( 𝑟  ∩  𝑠 ) )  →  ( 𝑟  ∩  𝑠 )  ⊆  dom  ( 𝑥  ∈  𝑋  ↦  𝐵 ) ) | 
						
							| 98 | 97 82 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑟  ⊆  𝑋 )  ∧  𝑡  ∈  ( 𝑟  ∩  𝑠 ) )  →  𝑡  ∈  dom  ( 𝑥  ∈  𝑋  ↦  𝐵 ) ) | 
						
							| 99 |  | funfvima | ⊢ ( ( Fun  ( 𝑥  ∈  𝑋  ↦  𝐵 )  ∧  𝑡  ∈  dom  ( 𝑥  ∈  𝑋  ↦  𝐵 ) )  →  ( 𝑡  ∈  𝑠  →  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝑡 )  ∈  ( ( 𝑥  ∈  𝑋  ↦  𝐵 )  “  𝑠 ) ) ) | 
						
							| 100 | 95 98 99 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑟  ⊆  𝑋 )  ∧  𝑡  ∈  ( 𝑟  ∩  𝑠 ) )  →  ( 𝑡  ∈  𝑠  →  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝑡 )  ∈  ( ( 𝑥  ∈  𝑋  ↦  𝐵 )  “  𝑠 ) ) ) | 
						
							| 101 | 93 100 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑟  ⊆  𝑋 )  ∧  𝑡  ∈  ( 𝑟  ∩  𝑠 ) )  →  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝑡 )  ∈  ( ( 𝑥  ∈  𝑋  ↦  𝐵 )  “  𝑠 ) ) | 
						
							| 102 | 92 101 | opelxpd | ⊢ ( ( ( 𝜑  ∧  𝑟  ⊆  𝑋 )  ∧  𝑡  ∈  ( 𝑟  ∩  𝑠 ) )  →  〈 ( ( 𝑥  ∈  𝑋  ↦  𝐴 ) ‘ 𝑡 ) ,  ( ( 𝑥  ∈  𝑋  ↦  𝐵 ) ‘ 𝑡 ) 〉  ∈  ( ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑟 )  ×  ( ( 𝑥  ∈  𝑋  ↦  𝐵 )  “  𝑠 ) ) ) | 
						
							| 103 | 81 102 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑟  ⊆  𝑋 )  ∧  𝑡  ∈  ( 𝑟  ∩  𝑠 ) )  →  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ‘ 𝑡 )  ∈  ( ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑟 )  ×  ( ( 𝑥  ∈  𝑋  ↦  𝐵 )  “  𝑠 ) ) ) | 
						
							| 104 | 103 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑟  ⊆  𝑋 )  →  ∀ 𝑡  ∈  ( 𝑟  ∩  𝑠 ) ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ‘ 𝑡 )  ∈  ( ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑟 )  ×  ( ( 𝑥  ∈  𝑋  ↦  𝐵 )  “  𝑠 ) ) ) | 
						
							| 105 | 14 | ffund | ⊢ ( 𝜑  →  Fun  ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ) | 
						
							| 106 | 105 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ⊆  𝑋 )  →  Fun  ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ) | 
						
							| 107 | 14 | fdmd | ⊢ ( 𝜑  →  dom  ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  =  𝑋 ) | 
						
							| 108 | 107 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ⊆  𝑋 )  →  dom  ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  =  𝑋 ) | 
						
							| 109 | 67 108 | sseqtrrd | ⊢ ( ( 𝜑  ∧  𝑟  ⊆  𝑋 )  →  ( 𝑟  ∩  𝑠 )  ⊆  dom  ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ) | 
						
							| 110 |  | funimass4 | ⊢ ( ( Fun  ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  ∧  ( 𝑟  ∩  𝑠 )  ⊆  dom  ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) )  →  ( ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  “  ( 𝑟  ∩  𝑠 ) )  ⊆  ( ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑟 )  ×  ( ( 𝑥  ∈  𝑋  ↦  𝐵 )  “  𝑠 ) )  ↔  ∀ 𝑡  ∈  ( 𝑟  ∩  𝑠 ) ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ‘ 𝑡 )  ∈  ( ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑟 )  ×  ( ( 𝑥  ∈  𝑋  ↦  𝐵 )  “  𝑠 ) ) ) ) | 
						
							| 111 | 106 109 110 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑟  ⊆  𝑋 )  →  ( ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  “  ( 𝑟  ∩  𝑠 ) )  ⊆  ( ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑟 )  ×  ( ( 𝑥  ∈  𝑋  ↦  𝐵 )  “  𝑠 ) )  ↔  ∀ 𝑡  ∈  ( 𝑟  ∩  𝑠 ) ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ‘ 𝑡 )  ∈  ( ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑟 )  ×  ( ( 𝑥  ∈  𝑋  ↦  𝐵 )  “  𝑠 ) ) ) ) | 
						
							| 112 | 104 111 | mpbird | ⊢ ( ( 𝜑  ∧  𝑟  ⊆  𝑋 )  →  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  “  ( 𝑟  ∩  𝑠 ) )  ⊆  ( ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑟 )  ×  ( ( 𝑥  ∈  𝑋  ↦  𝐵 )  “  𝑠 ) ) ) | 
						
							| 113 | 65 112 | syldan | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝐽  ∧  𝑠  ∈  𝐽 ) )  →  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  “  ( 𝑟  ∩  𝑠 ) )  ⊆  ( ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑟 )  ×  ( ( 𝑥  ∈  𝑋  ↦  𝐵 )  “  𝑠 ) ) ) | 
						
							| 114 | 113 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑣  ∈  𝐾  ∧  𝑤  ∈  𝐿 ) )  ∧  ( 𝑟  ∈  𝐽  ∧  𝑠  ∈  𝐽 ) )  →  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  “  ( 𝑟  ∩  𝑠 ) )  ⊆  ( ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑟 )  ×  ( ( 𝑥  ∈  𝑋  ↦  𝐵 )  “  𝑠 ) ) ) | 
						
							| 115 |  | xpss12 | ⊢ ( ( ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑟 )  ⊆  𝑣  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐵 )  “  𝑠 )  ⊆  𝑤 )  →  ( ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑟 )  ×  ( ( 𝑥  ∈  𝑋  ↦  𝐵 )  “  𝑠 ) )  ⊆  ( 𝑣  ×  𝑤 ) ) | 
						
							| 116 |  | sstr2 | ⊢ ( ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  “  ( 𝑟  ∩  𝑠 ) )  ⊆  ( ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑟 )  ×  ( ( 𝑥  ∈  𝑋  ↦  𝐵 )  “  𝑠 ) )  →  ( ( ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑟 )  ×  ( ( 𝑥  ∈  𝑋  ↦  𝐵 )  “  𝑠 ) )  ⊆  ( 𝑣  ×  𝑤 )  →  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  “  ( 𝑟  ∩  𝑠 ) )  ⊆  ( 𝑣  ×  𝑤 ) ) ) | 
						
							| 117 | 114 115 116 | syl2im | ⊢ ( ( ( 𝜑  ∧  ( 𝑣  ∈  𝐾  ∧  𝑤  ∈  𝐿 ) )  ∧  ( 𝑟  ∈  𝐽  ∧  𝑠  ∈  𝐽 ) )  →  ( ( ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑟 )  ⊆  𝑣  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐵 )  “  𝑠 )  ⊆  𝑤 )  →  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  “  ( 𝑟  ∩  𝑠 ) )  ⊆  ( 𝑣  ×  𝑤 ) ) ) | 
						
							| 118 | 62 117 | anim12d | ⊢ ( ( ( 𝜑  ∧  ( 𝑣  ∈  𝐾  ∧  𝑤  ∈  𝐿 ) )  ∧  ( 𝑟  ∈  𝐽  ∧  𝑠  ∈  𝐽 ) )  →  ( ( ( 𝐷  ∈  𝑟  ∧  𝐷  ∈  𝑠 )  ∧  ( ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑟 )  ⊆  𝑣  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐵 )  “  𝑠 )  ⊆  𝑤 ) )  →  ( 𝐷  ∈  ( 𝑟  ∩  𝑠 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  “  ( 𝑟  ∩  𝑠 ) )  ⊆  ( 𝑣  ×  𝑤 ) ) ) ) | 
						
							| 119 | 59 118 | biimtrid | ⊢ ( ( ( 𝜑  ∧  ( 𝑣  ∈  𝐾  ∧  𝑤  ∈  𝐿 ) )  ∧  ( 𝑟  ∈  𝐽  ∧  𝑠  ∈  𝐽 ) )  →  ( ( ( 𝐷  ∈  𝑟  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑟 )  ⊆  𝑣 )  ∧  ( 𝐷  ∈  𝑠  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐵 )  “  𝑠 )  ⊆  𝑤 ) )  →  ( 𝐷  ∈  ( 𝑟  ∩  𝑠 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  “  ( 𝑟  ∩  𝑠 ) )  ⊆  ( 𝑣  ×  𝑤 ) ) ) ) | 
						
							| 120 |  | topontop | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝐽  ∈  Top ) | 
						
							| 121 | 1 120 | syl | ⊢ ( 𝜑  →  𝐽  ∈  Top ) | 
						
							| 122 |  | inopn | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑟  ∈  𝐽  ∧  𝑠  ∈  𝐽 )  →  ( 𝑟  ∩  𝑠 )  ∈  𝐽 ) | 
						
							| 123 | 122 | 3expb | ⊢ ( ( 𝐽  ∈  Top  ∧  ( 𝑟  ∈  𝐽  ∧  𝑠  ∈  𝐽 ) )  →  ( 𝑟  ∩  𝑠 )  ∈  𝐽 ) | 
						
							| 124 | 121 123 | sylan | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝐽  ∧  𝑠  ∈  𝐽 ) )  →  ( 𝑟  ∩  𝑠 )  ∈  𝐽 ) | 
						
							| 125 | 124 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑣  ∈  𝐾  ∧  𝑤  ∈  𝐿 ) )  ∧  ( 𝑟  ∈  𝐽  ∧  𝑠  ∈  𝐽 ) )  →  ( 𝑟  ∩  𝑠 )  ∈  𝐽 ) | 
						
							| 126 | 119 125 | jctild | ⊢ ( ( ( 𝜑  ∧  ( 𝑣  ∈  𝐾  ∧  𝑤  ∈  𝐿 ) )  ∧  ( 𝑟  ∈  𝐽  ∧  𝑠  ∈  𝐽 ) )  →  ( ( ( 𝐷  ∈  𝑟  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑟 )  ⊆  𝑣 )  ∧  ( 𝐷  ∈  𝑠  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐵 )  “  𝑠 )  ⊆  𝑤 ) )  →  ( ( 𝑟  ∩  𝑠 )  ∈  𝐽  ∧  ( 𝐷  ∈  ( 𝑟  ∩  𝑠 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  “  ( 𝑟  ∩  𝑠 ) )  ⊆  ( 𝑣  ×  𝑤 ) ) ) ) ) | 
						
							| 127 | 126 | expimpd | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝐾  ∧  𝑤  ∈  𝐿 ) )  →  ( ( ( 𝑟  ∈  𝐽  ∧  𝑠  ∈  𝐽 )  ∧  ( ( 𝐷  ∈  𝑟  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑟 )  ⊆  𝑣 )  ∧  ( 𝐷  ∈  𝑠  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐵 )  “  𝑠 )  ⊆  𝑤 ) ) )  →  ( ( 𝑟  ∩  𝑠 )  ∈  𝐽  ∧  ( 𝐷  ∈  ( 𝑟  ∩  𝑠 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  “  ( 𝑟  ∩  𝑠 ) )  ⊆  ( 𝑣  ×  𝑤 ) ) ) ) ) | 
						
							| 128 |  | eleq2 | ⊢ ( 𝑧  =  ( 𝑟  ∩  𝑠 )  →  ( 𝐷  ∈  𝑧  ↔  𝐷  ∈  ( 𝑟  ∩  𝑠 ) ) ) | 
						
							| 129 |  | imaeq2 | ⊢ ( 𝑧  =  ( 𝑟  ∩  𝑠 )  →  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  “  𝑧 )  =  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  “  ( 𝑟  ∩  𝑠 ) ) ) | 
						
							| 130 | 129 | sseq1d | ⊢ ( 𝑧  =  ( 𝑟  ∩  𝑠 )  →  ( ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  “  𝑧 )  ⊆  ( 𝑣  ×  𝑤 )  ↔  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  “  ( 𝑟  ∩  𝑠 ) )  ⊆  ( 𝑣  ×  𝑤 ) ) ) | 
						
							| 131 | 128 130 | anbi12d | ⊢ ( 𝑧  =  ( 𝑟  ∩  𝑠 )  →  ( ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  “  𝑧 )  ⊆  ( 𝑣  ×  𝑤 ) )  ↔  ( 𝐷  ∈  ( 𝑟  ∩  𝑠 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  “  ( 𝑟  ∩  𝑠 ) )  ⊆  ( 𝑣  ×  𝑤 ) ) ) ) | 
						
							| 132 | 131 | rspcev | ⊢ ( ( ( 𝑟  ∩  𝑠 )  ∈  𝐽  ∧  ( 𝐷  ∈  ( 𝑟  ∩  𝑠 )  ∧  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  “  ( 𝑟  ∩  𝑠 ) )  ⊆  ( 𝑣  ×  𝑤 ) ) )  →  ∃ 𝑧  ∈  𝐽 ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  “  𝑧 )  ⊆  ( 𝑣  ×  𝑤 ) ) ) | 
						
							| 133 | 127 132 | syl6 | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝐾  ∧  𝑤  ∈  𝐿 ) )  →  ( ( ( 𝑟  ∈  𝐽  ∧  𝑠  ∈  𝐽 )  ∧  ( ( 𝐷  ∈  𝑟  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑟 )  ⊆  𝑣 )  ∧  ( 𝐷  ∈  𝑠  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐵 )  “  𝑠 )  ⊆  𝑤 ) ) )  →  ∃ 𝑧  ∈  𝐽 ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  “  𝑧 )  ⊆  ( 𝑣  ×  𝑤 ) ) ) ) | 
						
							| 134 | 133 | expd | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝐾  ∧  𝑤  ∈  𝐿 ) )  →  ( ( 𝑟  ∈  𝐽  ∧  𝑠  ∈  𝐽 )  →  ( ( ( 𝐷  ∈  𝑟  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑟 )  ⊆  𝑣 )  ∧  ( 𝐷  ∈  𝑠  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐵 )  “  𝑠 )  ⊆  𝑤 ) )  →  ∃ 𝑧  ∈  𝐽 ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  “  𝑧 )  ⊆  ( 𝑣  ×  𝑤 ) ) ) ) ) | 
						
							| 135 | 134 | rexlimdvv | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝐾  ∧  𝑤  ∈  𝐿 ) )  →  ( ∃ 𝑟  ∈  𝐽 ∃ 𝑠  ∈  𝐽 ( ( 𝐷  ∈  𝑟  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐴 )  “  𝑟 )  ⊆  𝑣 )  ∧  ( 𝐷  ∈  𝑠  ∧  ( ( 𝑥  ∈  𝑋  ↦  𝐵 )  “  𝑠 )  ⊆  𝑤 ) )  →  ∃ 𝑧  ∈  𝐽 ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  “  𝑧 )  ⊆  ( 𝑣  ×  𝑤 ) ) ) ) | 
						
							| 136 | 58 135 | syld | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝐾  ∧  𝑤  ∈  𝐿 ) )  →  ( ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ‘ 𝐷 )  ∈  ( 𝑣  ×  𝑤 )  →  ∃ 𝑧  ∈  𝐽 ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  “  𝑧 )  ⊆  ( 𝑣  ×  𝑤 ) ) ) ) | 
						
							| 137 | 136 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑣  ∈  𝐾 ∀ 𝑤  ∈  𝐿 ( ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ‘ 𝐷 )  ∈  ( 𝑣  ×  𝑤 )  →  ∃ 𝑧  ∈  𝐽 ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  “  𝑧 )  ⊆  ( 𝑣  ×  𝑤 ) ) ) ) | 
						
							| 138 |  | vex | ⊢ 𝑣  ∈  V | 
						
							| 139 |  | vex | ⊢ 𝑤  ∈  V | 
						
							| 140 | 138 139 | xpex | ⊢ ( 𝑣  ×  𝑤 )  ∈  V | 
						
							| 141 | 140 | rgen2w | ⊢ ∀ 𝑣  ∈  𝐾 ∀ 𝑤  ∈  𝐿 ( 𝑣  ×  𝑤 )  ∈  V | 
						
							| 142 |  | eqid | ⊢ ( 𝑣  ∈  𝐾 ,  𝑤  ∈  𝐿  ↦  ( 𝑣  ×  𝑤 ) )  =  ( 𝑣  ∈  𝐾 ,  𝑤  ∈  𝐿  ↦  ( 𝑣  ×  𝑤 ) ) | 
						
							| 143 |  | eleq2 | ⊢ ( 𝑦  =  ( 𝑣  ×  𝑤 )  →  ( ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ‘ 𝐷 )  ∈  𝑦  ↔  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ‘ 𝐷 )  ∈  ( 𝑣  ×  𝑤 ) ) ) | 
						
							| 144 |  | sseq2 | ⊢ ( 𝑦  =  ( 𝑣  ×  𝑤 )  →  ( ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  “  𝑧 )  ⊆  𝑦  ↔  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  “  𝑧 )  ⊆  ( 𝑣  ×  𝑤 ) ) ) | 
						
							| 145 | 144 | anbi2d | ⊢ ( 𝑦  =  ( 𝑣  ×  𝑤 )  →  ( ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  “  𝑧 )  ⊆  𝑦 )  ↔  ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  “  𝑧 )  ⊆  ( 𝑣  ×  𝑤 ) ) ) ) | 
						
							| 146 | 145 | rexbidv | ⊢ ( 𝑦  =  ( 𝑣  ×  𝑤 )  →  ( ∃ 𝑧  ∈  𝐽 ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  “  𝑧 )  ⊆  𝑦 )  ↔  ∃ 𝑧  ∈  𝐽 ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  “  𝑧 )  ⊆  ( 𝑣  ×  𝑤 ) ) ) ) | 
						
							| 147 | 143 146 | imbi12d | ⊢ ( 𝑦  =  ( 𝑣  ×  𝑤 )  →  ( ( ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ‘ 𝐷 )  ∈  𝑦  →  ∃ 𝑧  ∈  𝐽 ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  “  𝑧 )  ⊆  𝑦 ) )  ↔  ( ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ‘ 𝐷 )  ∈  ( 𝑣  ×  𝑤 )  →  ∃ 𝑧  ∈  𝐽 ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  “  𝑧 )  ⊆  ( 𝑣  ×  𝑤 ) ) ) ) ) | 
						
							| 148 | 142 147 | ralrnmpo | ⊢ ( ∀ 𝑣  ∈  𝐾 ∀ 𝑤  ∈  𝐿 ( 𝑣  ×  𝑤 )  ∈  V  →  ( ∀ 𝑦  ∈  ran  ( 𝑣  ∈  𝐾 ,  𝑤  ∈  𝐿  ↦  ( 𝑣  ×  𝑤 ) ) ( ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ‘ 𝐷 )  ∈  𝑦  →  ∃ 𝑧  ∈  𝐽 ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  “  𝑧 )  ⊆  𝑦 ) )  ↔  ∀ 𝑣  ∈  𝐾 ∀ 𝑤  ∈  𝐿 ( ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ‘ 𝐷 )  ∈  ( 𝑣  ×  𝑤 )  →  ∃ 𝑧  ∈  𝐽 ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  “  𝑧 )  ⊆  ( 𝑣  ×  𝑤 ) ) ) ) ) | 
						
							| 149 | 141 148 | ax-mp | ⊢ ( ∀ 𝑦  ∈  ran  ( 𝑣  ∈  𝐾 ,  𝑤  ∈  𝐿  ↦  ( 𝑣  ×  𝑤 ) ) ( ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ‘ 𝐷 )  ∈  𝑦  →  ∃ 𝑧  ∈  𝐽 ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  “  𝑧 )  ⊆  𝑦 ) )  ↔  ∀ 𝑣  ∈  𝐾 ∀ 𝑤  ∈  𝐿 ( ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ‘ 𝐷 )  ∈  ( 𝑣  ×  𝑤 )  →  ∃ 𝑧  ∈  𝐽 ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  “  𝑧 )  ⊆  ( 𝑣  ×  𝑤 ) ) ) ) | 
						
							| 150 | 137 149 | sylibr | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  ran  ( 𝑣  ∈  𝐾 ,  𝑤  ∈  𝐿  ↦  ( 𝑣  ×  𝑤 ) ) ( ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ‘ 𝐷 )  ∈  𝑦  →  ∃ 𝑧  ∈  𝐽 ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  “  𝑧 )  ⊆  𝑦 ) ) ) | 
						
							| 151 |  | topontop | ⊢ ( 𝐾  ∈  ( TopOn ‘ 𝑌 )  →  𝐾  ∈  Top ) | 
						
							| 152 | 2 151 | syl | ⊢ ( 𝜑  →  𝐾  ∈  Top ) | 
						
							| 153 |  | topontop | ⊢ ( 𝐿  ∈  ( TopOn ‘ 𝑍 )  →  𝐿  ∈  Top ) | 
						
							| 154 | 3 153 | syl | ⊢ ( 𝜑  →  𝐿  ∈  Top ) | 
						
							| 155 |  | eqid | ⊢ ran  ( 𝑣  ∈  𝐾 ,  𝑤  ∈  𝐿  ↦  ( 𝑣  ×  𝑤 ) )  =  ran  ( 𝑣  ∈  𝐾 ,  𝑤  ∈  𝐿  ↦  ( 𝑣  ×  𝑤 ) ) | 
						
							| 156 | 155 | txval | ⊢ ( ( 𝐾  ∈  Top  ∧  𝐿  ∈  Top )  →  ( 𝐾  ×t  𝐿 )  =  ( topGen ‘ ran  ( 𝑣  ∈  𝐾 ,  𝑤  ∈  𝐿  ↦  ( 𝑣  ×  𝑤 ) ) ) ) | 
						
							| 157 | 152 154 156 | syl2anc | ⊢ ( 𝜑  →  ( 𝐾  ×t  𝐿 )  =  ( topGen ‘ ran  ( 𝑣  ∈  𝐾 ,  𝑤  ∈  𝐿  ↦  ( 𝑣  ×  𝑤 ) ) ) ) | 
						
							| 158 |  | txtopon | ⊢ ( ( 𝐾  ∈  ( TopOn ‘ 𝑌 )  ∧  𝐿  ∈  ( TopOn ‘ 𝑍 ) )  →  ( 𝐾  ×t  𝐿 )  ∈  ( TopOn ‘ ( 𝑌  ×  𝑍 ) ) ) | 
						
							| 159 | 2 3 158 | syl2anc | ⊢ ( 𝜑  →  ( 𝐾  ×t  𝐿 )  ∈  ( TopOn ‘ ( 𝑌  ×  𝑍 ) ) ) | 
						
							| 160 | 1 157 159 4 | tgcnp | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  ∈  ( ( 𝐽  CnP  ( 𝐾  ×t  𝐿 ) ) ‘ 𝐷 )  ↔  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) : 𝑋 ⟶ ( 𝑌  ×  𝑍 )  ∧  ∀ 𝑦  ∈  ran  ( 𝑣  ∈  𝐾 ,  𝑤  ∈  𝐿  ↦  ( 𝑣  ×  𝑤 ) ) ( ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 ) ‘ 𝐷 )  ∈  𝑦  →  ∃ 𝑧  ∈  𝐽 ( 𝐷  ∈  𝑧  ∧  ( ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  “  𝑧 )  ⊆  𝑦 ) ) ) ) ) | 
						
							| 161 | 14 150 160 | mpbir2and | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝑋  ↦  〈 𝐴 ,  𝐵 〉 )  ∈  ( ( 𝐽  CnP  ( 𝐾  ×t  𝐿 ) ) ‘ 𝐷 ) ) |